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Abstract— Consider a remote sensing system where mul-
tiple pairs of stochastic subsystems and corresponding non-
collocated estimators share a common wireless network. In
order to avoid packet collisions, the access to the network is
mediated by a manager that chooses, based on the realizations
of the states, which one (if any) of the states will be transmitted
over the network. Each estimator is interested solely on the
state of its corresponding subsystem. This paper studies the
jointly optimal design of scheduling and estimation strategies
for a cost functional consisting of a mean-squared error and
a communication cost in a one-shot problem formulation. The
global optimality of a scheduling and estimation strategy pair
for the unicast network model is established. A person-by-
person optimal pair of strategies is obtained for a broadcast
network model.

I. INTRODUCTION

Reliable real-time wireless networking is an important
requirement of modern cyberphysical systems [1]. Due to
their large scale, these systems are typically formed by
multiple physically distributed subsystems, that communicate
over wireless networks of limited capacity. In addition to
degrading the performance of overall system, the fact that
the communication among the different agents in cyber-
physical systems is imperfect often leads dynamic team-
decision problems with nonclassical information structures.
Such problems are usually nonconvex, and are in general
difficult to solve [2].

We consider a class of one-shot remote estimation prob-
lems involving a large scale distributed system. The system
consists of multiple subsystems paired with their correspond-
ing estimators, communicating over a shared network as in
Fig. 1. The states of the multiple subsystems are observed
by a network manager that chooses a single observation to
be transmitted in a packet over the wireless network. The
role of the network manager is to implement a strategy that
eliminates simultaneous transmissions that otherwise would
result in packet collisions as in [3].

We assume two different models for the wireless net-
work: the unicast and the broadcast models. Each model
induces a distinct information structure in the team-decision
problem. In the unicast network, a single estimator receives
its intended packet and the remaining estimators receive
“no-transmission” symbols; In the broadcast network, all
of the estimators receive the same transmitted packet. Our
goal is to find scheduling and estimation strategies that
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Fig. 1. Block diagram of the observation-driven sensor scheduling problem.

jointly minimize an objective cost functional consisting of a
mean-squared error criterion and a communication cost. We
note that both cases correspond to team-decision problems
with nonclassical information structures. Obtaining globally
optimal solutions for these problems is a challenging task,
in general.

The problem we address in this paper is motivated by
applications in networked control and estimation where there
is a hard constraint on the number of packets that can be
transmitted over the network. Due to the presence of interfer-
ence in wireless networks, we are interested in systems where
some form of collision avoidance algorithm is implemented.
Such mechanisms are broadly classified into two categories:
contention-free and contention-based medium access control
(MAC) protocols [4]. Contention-free MAC protocols are
characterized by the fact that each node either receives
a fixed portion of the communication resources such as
in time-division or frequency-division multiple access; or
the resource is allocated dynamically such as in token and
polling-based multiple access. Contention-based protocols
are characterized by the use of random access and collision
resolution mechanisms such as in the ALOHA and CSMA
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protocols.
There is a growing body of work related to the class

of systems considered here. One of the first references on
scheduling and its impact on the stability of networked
control systems is [5]. The performance of event-triggered
control loops over a shared network for different scheduling
protocols was studied in [6]. The idea of introducing a
network manager to schedule the access to the network
by multiple control loops was proposed in [7] as well as
in [8]. The impact of contention-based MAC schemes in
networked estimation was considered in [9]. The issue of
scheduling in networked estimation systems is considered by
[10], where the performances of static, randomized and dy-
namic scheduling strategies were compared using a long-run
average cost criterion. Our problem formulation distinguishes
itself from the aforementioned works by jointly designing the
scheduling and estimation strategies in a one-shot problem
formulation. Solving the one-shot problem is a fundamental
step in solving more general sequential estimation problems
such as in [11] and [12].

The main contribution of this paper is to establish two
optimality results of a scheduling strategy with the following
structure: the norms of the state vectors are compared to a
threshold; if at least one of the norms exceeds this threshold,
the vector with the largest norm is transmitted. The optimal
estimation strategy associated with this choice of scheduling
strategy outputs the mean of the observation when a no-
transmission symbol is received, or the received vector,
otherwise. For the unicast network, we show that this strategy
is optimal despite the fact that the optimization problem is
nonconvex. For the broadcast network, we show that this
strategy is person-by-person optimal. Our results hold for
mutually independent vectors, with unimodal circularly sym-
metric densities. These results provide insight and reinforce
the structure of strategies used in the architecture of some
networked control and estimation systems such as [10].

The remainder of the paper is organized as follows. The
problem setup, preliminary definitions and a brief discussion
on signaling are presented in Section II. Our two main
optimality results are stated in Section III. The proofs of our
main results are provided in Section IV. The paper ends with
our conclusions and future research directions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a stochastic system with N ≥ 2 independent
subsystems P1, · · · ,PN and corresponding non-collocated
estimators E1, · · · , EN . Let the state of subsystem Pi be
denoted by Xi ∈ Rni where

Xi ∼ fXi
, i ∈ {1, · · · , N}. (1)

Each estimator Ei is interested in forming estimates of the
state of its corresponding subsystem Pi, i ∈ {1, · · · , N}. The
subsystems communicate with their respective estimators
over a synchronous wireless network that can support a
single packet per time slot. In order to avoid collisions, the
access to the shared network is scheduled by a network man-
ager, whose role is to decide which one of the subsystems

will transmit a packet containing the measured state Xi and
its index over the network.

Let the vector X denote the concatenation of X1, · · · , XN

such that X ∈ Rn with n = n1 + · · · + nN . The vector
X is distributed according to fX . The scheduling strategy
implemented by the network manager is a map

γ : Rn → {0, 1, · · · , N} (2)

and a decision variable U is computed according to

U = γ(X). (3)

The decision variable U represents the index of the subsys-
tem chosen by the network manager to transmit its state over
the network. If U ∈ {1, · · · , N}, the network input consists
of a packet containing the chosen index U and the state XU .
If U = 0, the network input is the “no-transmission” symbol
denoted by ∅. The space of admissible scheduling strategies
is denoted by Γ.

Remark 1: A communication packet is assumed to contain
enough bits to represent a real vector xi with negligible
quantization error. However, in practice, a packet has a
finite number of bits. Therefore, the network manager is not
allowed to encapsulate the state of the entire system in a
single packet and broadcast it over the network.

A. Information structures

The signals observed at the estimators are determined
by the decision variable U and the wireless network. The
structure of the network induces an information structure
in our model. Let the network output signal observed by
estimator Ei be denoted by Yi, i ∈ {1, · · · , N}. In this paper,
we will focus on two network models.

1) Unicast information structure (I1): Information struc-
ture I1 corresponds to the case where a single transmitter-
receiver pair is selected by the network manager at a time.
The communication between the chosen pair is perfect, and
the remaining pairs remain idle. The network outputs are
specified as follows:

Yi =

{
(U,XU ), if U = i

∅, otherwise
, i ∈ {1, · · · , N}. (4)

Based on its observation, estimator Ei forms an estimate of
X̂i of the state of subsystem Pi, according to a function ψi.
An estimation strategy for estimator Ei is a map

ψi : {∅} ∪ {i× Rni} → Rni , i ∈ {1, · · · , N}. (5)

2) Broadcast information structure (I2): Information
structure I2 corresponds to the case where the network
manager broadcasts its choice to all the receivers connected
to the network, i.e., transmits the same information bearing
signal over the wireless medium. The network outputs are
specified as follows:

Yi =

{
(U,XU ), if U 6= 0

∅, otherwise
, i ∈ {1, · · · , N}. (6)
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Based on its observation, estimator Ei forms an estimate X̂i

of the state of subsystem Pi, according to a function ψi. An
estimation strategy for estimator Ei is a map

ψi : {∅} ∪
N⋃
j=1

{j × Rnj} → Rni , i ∈ {1, · · · , N}. (7)

The estimates X̂1, · · · , X̂N are computed according to

X̂i = ψi(Yi), i ∈ {1, · · · , N}. (8)

From now on, we will refer to an estimation strategy profile
ψ as the vector of estimation strategies defined as

ψ
def
= (ψ1, · · · , ψN ). (9)

The space of admissible estimation strategy profiles is de-
noted by Ψ.

B. Cost functional

We are interested in obtaining a pair of scheduling and
estimation strategies (γ, ψ) ∈ Γ×Ψ such that the aggregate
mean-squared error in estimating the random vectors Xi plus
a communication cost for transmitting over the network is
minimized. This corresponds to the cost functional γ : Γ ×
Ψ→ R such that

J (γ, ψ)
def
= E

[
N∑
i=1

‖Xi − X̂i‖2 + c · 1(U 6= 0)

]
, (10)

where c ≥ 0. The general problem considered in this paper
is stated below.

Problem 1: Given the joint probability density function of
X , the constant c ≥ 0, and a fixed information structure I1

or I2; find a pair of strategies (γ, ψ) ∈ Γ×Ψ that minimizes
J (γ, ψ) in Eq. (10).

C. Notions of optimality

Throughout the paper we will refer to two notions of
optimality commonly used in team-decision theory.

1) Global optimal solutions: A pair of scheduling and
estimation strategies (γ∗, ψ∗) ∈ Γ×Ψ is globally optimal if

J (γ∗, ψ∗) ≤ J (γ, ψ) , (γ, ψ) ∈ Γ×Ψ. (11)

2) Person-by-person optimal solutions: A pair of schedul-
ing and estimation strategies (γ∗, ψ∗) ∈ Γ×Ψ is person-by-
person optimal if

J (γ∗, ψ∗) ≤ J (γ∗, ψ) , ψ ∈ Ψ;

J (γ∗, ψ∗) ≤ J (γ, ψ∗) , γ ∈ Γ.
(12)

Person-by-person optimality is a necessary but not suffi-
cient condition for global optimality, and therefore it is a
weaker notion. However, it is a useful concept that can be
used to characterize properties of globally optimal solutions.

x1

x2

U = 1

A1

U = 0

A0

A2

U = 2

Fig. 2. Partition of the observation space used to illustrate the issue of
signaling in problems of networked estimation.

D. A brief discussion on signaling

In problems of decentralized control and estimation with
nonclassical information structures, optimal solutions usually
use a form of implicit communication known as signaling.
Signaling is the effect of conveying information through
actions [13], and it is the reason why this class of problems
are difficult to solve, cf. [14].

Consider an instance of Problem 1 with two zero-mean
independent scalar subsystems and information structure
I1. Assume that the network manager makes its decision
according to the partition of the observation space shown
in Fig. 2, where A0 ∪ A1 ∪ A2 = R2 and (x1, x2) ∈ Ai
implies that U = i, i ∈ {0, 1, 2}. Suppose that the network
manager observes (x1, x2) ∈ A1, which implies that U = 1
and consequently, Y1 = (1, x1) and Y2 = ∅. The optimal
estimate used by E2 in this case is

X̂2 = E[X2 | Y2 = ∅];

= E[X2 | (X1, X2) ∈ Ac2],
(13)

which may correspond to a different numerical value than if
we simply used the naı̈ve blind estimate E[X2] = 0.

If the problem has information structure I2, the obser-
vations at the estimators are Y1 = Y2 = (1, x1). This
situation is more complicated than what we had previously:
the optimal estimate used by E2 in this case is

X̂2 = E[X2 | Y2 = (1, x1)];

= E[X2 | (X1, X2) ∈ A1, X1 = x1],
(14)

which is a function of the scheduling strategy and x1. There-
fore, the optimal estimation strategy is always a function
of the scheduling strategy, even if the subsystems are inde-
pendent. This coupling between scheduling and estimation
strategies is what makes these problems nontrivial even in
one-shot scenarios. In the following sections, we elaborate
on these issues and take a few steps toward obtaining optimal
solutions to Problem 1.
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III. MAIN RESULTS

In Section II-D we argued that the naı̈ve estimate may not
be optimal when “no-transmission” symbols are observed,
for arbitrary scheduling strategies. However, under a few
assumptions on the probabilistic model of the system, they
turn out to be optimal when paired with an appropriate
scheduling strategy. The following scheduling and estimation
strategies play an important role in the two optimality results
we present next.

Definition 1 (Max-norm scheduling strategy): Let c ≥ 0
and x ∈ Rn. The max-norm scheduling strategy is defined
as

γmax(x)
def
=

{
0, if ‖xi‖ ≤

√
c, i ∈ {1, · · · , N}

arg max
i
‖xi‖, otherwise. (15)

Definition 2 (Mean-value estimation strategy): The mean
value estimation strategy profile ψmean is a vector of func-
tions where each component is given by

ψmean
i (yi)

def
=

{
xi, if yi = (i, xi)

E[Xi], otherwise
i ∈ {1, · · · , N}.

(16)
In this section we present two results for a class of

systems with independent observations. In the first result,
we completely characterize a solution of Problem 1 with the
unicast information structure under a symmetry and modality
assumption on the probability density functions.

Theorem 1: Consider Problem 1 with the unicast informa-
tion structure I1. If X1, · · · , XN are mutually independent,
zero-mean continuous random vectors distributed according
to circularly symmetric unimodal densities, then the pair
of strategies (γmax, ψmean) is a global optimal solution to
Problem 1.

Under an assumption on the symmetry of the probability
density functions, the next result provides a person-by-person
optimal solution to Problem 1 for the broadcast network
model.

Theorem 2: Consider Problem 1 with the broadcast in-
formation structure I2. If X1, · · · , XN are mutually inde-
pendent, zero-mean continuous random vectors distributed
according to circularly symmetric densities, then the pair
of strategies (γmax, ψmean) is a person-by-person optimal
solution to Problem 1.

Remark 2: The scheduling strategy γmax may be imple-
mented in a two-stage decentralized architecture: the compar-
isons with the threshold

√
c can be performed locally at the

subsystems; and the comparison among states is performed
by the network manager. The idea is that only the subsystems
whose states have a norm larger than the threshold should
request a transmission by the network manager. Therefore,
the parameter c controls the communication rate between
subsystems and estimators.

Remark 3: Theorem 1 is also valid for discrete random
vectors Xi under appropriate symmetry assumptions on the
probability mass functions pXi

, i ∈ {1, · · · , N}. We also
note that the broadcast information structure I2 provides
more information to the estimators than I1, which means

x1

x2

U = 0

U = 2

U = 2

U = 1U = 1

Fig. 3. Partition of R2 induced by γmax for the case of two scalar
subsystems. The sides of the shaded square have length 2

√
c.

that the optimal performance of a globally optimal solution
of Problem 1 under I2 should be at least as good as the
optimal performance under I1.

IV. PROOFS OF THEOREMS 1 AND 2
A. Unicast information structure and proof of Theorem 1

Lemma 1: Problem 1 can be written as a finite dimen-
sional optimization problem over Rn.

Proof: Using total expectation, we decompose the cost
functional as

J (γ, ψ) = E

[
N∑
i=1

‖Xi − X̂i‖2
∣∣∣ U = 0

]
P(U = 0)+

N∑
j=1

E

[
N∑
i=1

‖Xi − X̂i‖2 + c
∣∣∣ U = j

]
P(U = j). (17)

Let i ∈ {1, · · · , N}. Under I1, the estimator Ei either
receives Yi = (i, xi) or Yi = ∅. For any given γ ∈ Γ,
the optimal estimation strategy profile ψ∗γ is given by

ψ∗γ,i(yi) =

{
xi, if yi = (i, xi)

E[Xi | γ(X) 6= i], if yi = ∅
i ∈ {1, · · · , N}.

(18)
Constrain the search for estimation strategies to the following
class parameterized by x̂

def
= [x̂1, · · · , x̂N ] ∈ Rn. This class

consists of functions of the form

ψx̂i,i(yi) =

{
xi, if yi = (i, xi)

x̂i, otherwise
i ∈ {1, · · · , N}, (19)

where x̂i ∈ Rni . We denote this estimation strategy profile
by ψx̂. The optimal estimation strategy profile belongs to this
class. Therefore, constraining to this class is without loss of
optimality.

The jointly optimal scheduling and estimation strategies
can be found by solving the following optimization problem

minimize
x̂∈Rn

{
minimize

γ∈Γ
J (γ, ψx̂)

}
, (20)
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where

J (γ, ψx̂) =

∫
Rn

[( N∑
i=1

‖xi − x̂i‖2
)
1(γ(x) = 0)+

N∑
j=1

(∑
i 6=j

‖xi − x̂i‖2 + c

)
1(γ(x) = j)

 fX(x)dx, (21)

where we have used the following notation

1(A)
def
=

{
1, if A is true;

0, otherwise.
(22)

Denote J̃ : Rn → R such that

J̃ (x̂)
def
= min

γ∈Γ
J (γ, ψx̂). (23)

Let Aγj
def
= {x ∈ Rn | γ(x) = j}, j ∈ {0, 1, · · · , N}. The

sets Aγj are disjoint, therefore, at a given x ∈ Rn only one
of the indicator functions in Eq. (21) is equal to one and the
remaining are equal to zero. Assigning the points x ∈ Rn
to the sets Aγj such as to minimize Eq. (21), we construct a
scheduling strategy parametrized by x̂ ∈ Rn that is optimal
for a given ψx̂. Denote this scheduling strategy by γ∗x̂, where
x ∈ Rn is assigned to Aγ

∗
x̂

0 if and only if

‖xi − x̂i‖ ≤
√
c, i ∈ {1, · · · , N}. (24)

Similarly, x ∈ Rn is assigned to Aγ
∗
x̂
j , j ∈ {1, · · · , N}, if

and only if{
‖xj − x̂j‖ >

√
c;

‖xj − x̂j‖ ≥ ‖xk − x̂k‖, k 6= j.
(25)

The resulting cost is a function of x̂ ∈ Rn and is equal to

J̃ (x̂) = E

min

{ N∑
i=1

‖Xi − x̂i‖2,
∑
i 6=1

‖Xi − x̂i‖2 + c,

∑
i 6=2

‖Xi − x̂i‖2 + c, · · · ,
∑
i 6=N

‖Xi − x̂i‖2 + c

} . (26)

Therefore, Problem 1 reduces to

minimize
x̂∈Rn

J̃ (x̂). (27)

Let 0k denote the zero vector of dimension k.
Lemma 2: If x̂∗ = 0n, then the optimal scheduling

strategy is γmax.
Proof: The proof is an immediate consequence of

Eqs. (24) and (25), replacing x̂i = 0ni
, i ∈ {1, · · · , N}.

We are now ready to present the proof of Theorem 1.
Proof: From Lemma 1, Problem 1 is equivalent to a finite
dimensional optimization problem with variable x̂ ∈ Rn.
We shall show that under the assumptions of Theorem 1, the
point x̂∗ = 0n is a global minimizer of J̃ (x̂).

xj
x̂j

βj(x̂−j , x−j)

αj(x̂−j , x−j)

G(x̂, x)

Fig. 4. Conceptual plot of G(x̂, x) as a function of xj while keeping its
remaining arguments fixed.

Define the following function

G(x̂, x)
def
= min

{ N∑
i=1

‖xi − x̂i‖2,
∑
i6=1

‖xi − x̂i‖2 + c,

· · · ,
∑
i 6=N

‖xi − x̂i‖2 + c

}
. (28)

Let j ∈ {1, · · · , N} and note that G(x̂, x) can be expressed
as

G(x̂, x) = min
{
αj(x̂−j , x−j),

‖xj − x̂j‖2 + βj(x̂−j , x−j)
}
, (29)

where
αj(x̂−j , x−j)

def
=
∑
i 6=j

‖xi − x̂i‖2 + c (30)

and

βj(x̂−j , x−j)
def
= min

{∑
i 6=j

‖xi − x̂i‖2,∑
i 6={1,j}

‖xi − x̂i‖2 + c, · · · ,
∑

i 6={j−1,j}

‖xi − x̂i‖2 + c,

∑
i6={j+1,j}

‖xi − x̂i‖2 + c, · · · ,
∑

i6={N,j}

‖xi − x̂i‖2 + c

}
. (31)

Therefore, G(x̂, x) satisfies the following property:

lim
‖xj‖→+∞

G(x̂, x) = αj(x̂−j , x−j), (32)

which can be visualized in Fig. 4.
Using the mutual independence assumption, we rewrite

the cost as

J̃ (x̂) =

∫
Rn1

· · ·
∫
RnN

G(x̂, x)fX1
(x1) · · · fXN

(xN )dx1 · · · dxN .
(33)

Define the following function

J̃j(x̂j , x̂−j , x−j) def
=

∫
Rnj

G(x̂, x)fXj
(xj)dxj . (34)
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Our argument makes use of the Hardy-Littlewood inequal-
ity (see Appendix I) to show that

J̃j(x̂j , x̂−j , x−j) ≥ J̃j(0nj
, x̂−j , x−j). (35)

In order to show that, let Hj be defined as

Hj(x̂j , xj , x̂−j , x−j) def
= αj(x̂−j , x−j)− G(x̂, x). (36)

This function vanishes at infinity, i.e.,

lim
‖xj‖→+∞

Hj(x̂j , xj , x̂−j , x−j) = 0. (37)

Moreover, the symmetric decreasing rearrangement of Hj
with respect to xj while keeping its remaining arguments
fixed is

H↓j (x̂j , xj , x̂−j , x−j) = Hj(0nj , xj , x̂−j , x−j). (38)

Recall that

J̃j(x̂j , x̂−j , x−j) = αj(x̂−j , x−j)−∫
Rnj

Hj(x̂j , xj , x̂−j , x−j)fXj
(xj)dxj . (39)

Since fXj
is a circularly symmetric unimodal density with

mean equal to 0nj , its symmetric decreasing rearrangement
is given by

f↓Xj
= fXj

. (40)

The Hardy-Littlewood inequality implies that∫
Rnj

Hj(x̂j ,xj , x̂−j , x−j)fXj
(xj)dxj

≤
∫
Rnj

H↓j (x̂j , xj , x̂−j , x−j)f↓Xj
(xj)dxj ; (41)

=

∫
Rnj

Hj(0nj , xj , x̂−j , x−j)fXj (xj)dxj . (42)

Therefore,

J̃j(x̂j , x̂−j , x−j) ≥ J̃j(0nj
, x̂−j , x−j)⇒ x̂∗j = 0nj

. (43)

Since this is true for any x̂−j ∈ Rn−nj , it is also true for
x̂−j = 0n−nj

. Repeating this argument for j = 1, · · · , N
it follows that x̂∗ = 0n. From Lemma 2, the strategy pair
(γmax, ψmean) is globally optimal for Problem 1.

B. Broadcast information structure and proof of Theorem 2
Proof: Let i, j ∈ {1, · · · , N} such that i 6= j. Under

I2, the estimator Ei either receives Yi = (i, xi), Yi = (j, xj)
or Yi = ∅. For any given γ ∈ Γ, the optimal estimation
strategy profile ψ∗γ is given by

ψ∗γ,i(yi) =


xi, if yi = (i, xi);

E[Xi | γ(X) = j,Xj = xj ], if yi = (j, xj);

E[Xi | γ(X) = 0], if yi = ∅.
(44)

Without loss in optimality, constrain the search for optimal
estimation strategies to the class of functions Ψx̂,ĝ in which
the functions are of the form

ψi(yi) =


xi, if y = (i, xi);

ĝij(xj), if y = (j, xj);

x̂i, if y = ∅,
(45)

where x̂i ∈ Rni and ĝij : Rnj → Rni . Note that the optimal
representation points and functions depend on γ and are
given by

x̂∗i = E[Xi | γ(X) = 0]; (46)
ĝ∗ij(xj) = E[Xi | γ(X) = j,Xj = xj ]. (47)

For estimation strategies within Ψx̂,ĝ , the cost becomes

J (γ, ψ) =

∫
Rn

( N∑
i=1

‖xi− x̂i‖2
)
1(γ(x) = 0)fX(x)dx+

N∑
j=1

∫
Rn

(∑
i6=j

‖xi− ĝij(xj)‖2 +c

)
1(γ(x) = j)fX(x)dx.

(48)

For fixed vectors x̂i and maps ĝij , an optimal scheduling
strategy can be constructed and is given by:

γ∗x̂,ĝ(x) = 0⇔
N∑
i=1

‖xi−x̂i‖2 ≤
∑
i6=j

‖xi−ĝij(xj)‖2+c, j ∈ {1, · · · , N};

(49)

and

γ∗x̂,ĝ(x) = j ⇔
∑
i 6=j

‖xi − ĝij(xj)‖2 + c <

N∑
i=1

‖xi − x̂i‖2∑
i 6=j

‖xi − ĝij(xj)‖2 ≤
∑
i6=k

‖xi − ĝik(xk)‖2,

k ∈ {1, · · · , N}. (50)

Using this scheduling strategy, we can rewrite the cost as a
function of the estimation strategy profile ψ ∈ Ψx̂,ĝ:

J̃ (x̂, ĝ)
def
= E

[
min

{ N∑
i=1

‖Xi − x̂i‖2,

∑
i 6=1

‖Xi−ĝi1(Xj)‖2+c, · · · ,
∑
i 6=N

‖Xi−ĝiN (XN )‖2+c
}]
.

(51)

Minimizing J̃ (x̂, ĝ) is a nonconvex functional optimization
problem.1

If x̂i = 0ni
and ĝij(·) ≡ 0ni

, i, j ∈ {1, · · · , N}, then
Eqs. (49) and (50) imply that γ∗x̂,ĝ = γmax. Conversely, if
γ = γmax, then

x̂∗i =

∫
Rn xi1(γ(x) = 0)fX(x)dx∫
Rn 1(γ(x) = 0)fX(x)dx

. (52)

The set{
x ∈ Rn | γ(x) = 0

}
={

x ∈ Rn | ‖x1‖ ≤
√
c, · · · , ‖xN‖ ≤

√
c
}
. (53)

1Finding global minimizers of J̃ (x̂, ĝ) is an open problem.
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Using the independence assumption, the integral in the
numerator of Eq. (52) is∫

‖x1‖≤
√
c

· · ·
∫
‖xN‖≤

√
c

xifX1(x1) · · · fXN
(xN )dx1 · · · dxN .

(54)
Since fXi

is a circularly symmetric probability density
function,∫

‖xi‖≤
√
c

xifXi
(xi)dxi = 0ni

⇒ x̂∗i = 0ni
. (55)

Finally, for τ ∈ Rnj we compute

ĝ∗ij(τ) =

∫
Rn xi1(γ(x) = j, xj = τ)fX(x)dx∫
Rn 1(γ(x) = j, xj = τ)fX(x)dx

. (56)

The set over which the indicator function is equal to one is{
x ∈ Rn | ‖xj‖ ≥

√
c, ‖xj‖ ≥ ‖x1‖,
· · · , ‖xj‖ ≥ ‖xN‖, xj = τ

}
. (57)

Using the independence assumption, the numerator in
Eq. (56) is determined by∫

‖xi‖≤‖τ‖
xifXi

(xi)dxi ≡ 0ni
⇒ ĝ∗ij(τ) ≡ 0ni

. (58)

Therefore, the pair of strategies γmax and ψmean is person-
by-person optimal.

V. CONCLUSIONS

In this paper, we studied the problem of optimal schedul-
ing in a distributed remote estimation system communicating
over a shared communication medium. The access to the
communication resources is granted by a network manager,
which implements a medium access control strategy used to
avoid packet collisions. Two network models were consid-
ered: the unicast and broadcast models. Under independence
and symmetry assumptions on the probabilistic model that
specifies the problem, we obtained the following optimality
results. In the unicast case, we established the global optimal-
ity of the max-norm scheduling and mean-value estimation
strategies. In the broadcast case, we showed the person-
by-person optimality of the same pair. For the latter, we
conjecture that the person-by-person solution is also globally
optimal. These results are evidence that architectures that
use dynamic scheduling in conjunction with event-based
strategies used in previous works, may in fact be optimal
for certain classes of systems. Future research on this topic
include: extending the framework to consider correlated
subsystems; sequential problem formulations; and proving
the global optimality of the max-norm scheduling and mean-
value estimation for the broadcast network.

APPENDIX I
AUXILIARY RESULTS

The following two definitions and theorem can be found
in [15] and in [16].

Definition 3 (Symmetric rearrangement): Let A be a mea-
surable set of finite volume in Rn. Its symmetric rearrange-
ment A∗ is defined as the open ball centered at 0n whose
volume agrees with A.

Definition 4 (Symmetric decreasing rearrangement): Let
f : Rn → R be a nonnegative measurable function that
vanishes at infinity. The symmetric decreasing rearrangement
f↓ of f is

f↓(x)
def
=

∫ ∞
0

1
(
x ∈ {ξ ∈ Rn | f(ξ) > t}∗

)
dt. (59)

Theorem 3 (Hardy-Littlewood Inequality): If f and g are
two nonnegative measurable functions defined on Rn which
vanish at infinity, then the following holds:∫

Rn

f(x)g(x)dx ≤
∫
Rn

f↓(x)g↓(x)dx, (60)

where f↓ and g↓ are the symmetric decreasing rearrange-
ments of f and g, respectively.
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