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Optimal Remote Estimation of Discrete Random
Variables Over the Collision Channel

Marcos M. Vasconcelos and Nuno C. Martins

Abstract—Consider a system comprising sensors that
communicate with a remote estimator by way of a so-called
collision channel. Each sensor observes a discrete random
variable and must decide whether to transmit it to the remote
estimator or to remain silent. The variables are independent
across sensors. There is no communication among the sen-
sors, which precludes the use of coordinated transmission
policies. The collision channel functions as an ideal link
when a single sensor transmits. If there are two or more
simultaneous transmissions, then a collision occurs and is
detected at the remote estimator. The role of the remote es-
timator is to form estimates of all the observations at the
sensors. Our goal is to design transmission policies that
are globally optimal with respect to two criteria: the aggre-
gate probability of error, which is a convex combination of
the probabilities of error in estimating the individual obser-
vations; and the total probability of error. We show that, for
the aggregate probability of error criterion, it suffices to sift
through a structured finite set of candidate solutions to find
a globally optimal one. In general, the cardinality of this set
is exponential on the number of sensors, but we discuss
important cases in which it becomes quadratic or even one.
For the total probability of error criterion, we prove that the
solution in which each sensor transmits when it observes
all but a preselected most probable value is globally optimal.
So, no search is needed in this case. Our results hold irre-
spective of the probability mass functions of the observed
random variables, regardless the size of their support.

Index Terms—Concave minimization problems, maxi-
mum a posteriori (MAP) probability estimation, networked
decision systems, optimization, remote estimation, team
decision theory.

I. INTRODUCTION

CYBER-PHYSICAL systems have emerged as a frame-
work of system design where multiple agents sense, com-

municate over a network, and actuate on a physical system,
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Fig. 1. Schematic representation of remote estimation over a collision
channel.

operating as a team to achieve a common goal [1]. When the ob-
jective is (or requires) the optimization of a certain cost function,
the system designer’s task is to solve a problem of decentralized
decision-making, where the agents have access to different in-
formation and choose an action that incurs in a cost that depends
on the actions of all the decision makers. Furthermore, network
constraints and stringent delay requirements on the flow of infor-
mation between decision makers forces them to make efficient
use of potentially scarce communication resources.

We consider a Bayesian estimation problem illustrated by
the block diagram of Fig. 1, where multiple sensors observ-
ing independent discrete random variables decide whether to
communicate their measurements to a remote estimator over a
collision channel according to transmission policies. The com-
munication constraint imposed by the collision channel is such
that only one sensor can transmit its measurement perfectly; and
if more than one sensor transmits simultaneously, a collision
is declared. Upon observing the channel output, the estimator
forms estimates of all the observations at the sensors. Our goal
is to find the transmission policies that jointly optimize two
performance criteria involving probabilities of estimation error.

A. Applications

The collision channel captures data-transfer restrictions that
may result, for instance, from the interference caused by wire-
less transmitters sharing the same frequency band and are not
capable of executing scheduling or carrier-sense multiple access
protocols. These constraints are present in large-scale networks
of simple devices, such as tiny low-power sensors. Potential
applications include nanoscale intrabody networks for health
monitoring and drug delivery systems, and networks for en-
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vironmental monitoring of air pollution, water quality, and
biodiversity control [2], [3]. Remote estimation systems of this
type can also be applied in scenarios where the devices are
heterogeneous and there is a strict requirement for real-time
wireless networking, for example, ad hoc networks that lack a
coordination protocol among the devices such as the Internet
of Things [4], and data centers, which are subject to cascading
power failures [5] or cyber-attacks [6] that must be detected in
minimal time and as accurately as possible.

B. Related Literature and Prior Work

Many cyber-physical systems are either discrete or hybrid
(continuous and discrete) in nature. Although there exists a large
body of work on remote estimation systems with a continuous
state space, only a few papers deal with systems with discrete
state spaces, e.g., [7] and [8]. A class of problems in informa-
tion theory known as real-time coding and decoding of discrete
Markov sources is equivalent to remote estimation problems of
plants with a discrete state space. Notably, many contributions in
this area are derived using ideas from stochastic control such as
identifying sufficient statistics for the optimal coding and decod-
ing policies. Structural results of optimal policies for sequential
problem formulations involving a single sensor and a remote
estimator were obtained in [9]–[12]. The problem of estimating
an independent and identically distributed (i.i.d.) discrete source
observed by a single sensor with a limited number of measure-
ments and a probability of error criterion was solved in [8]. A
sequential, multisensor, real-time communication problem over
parallel channels was investigated in [13].

Problems of distributed decision-making such as the one in
this paper fall into the category of team decision problems with
discrete observation and action spaces, and a nonclassical in-
formation structure [14], [15]. It is known that problems in this
class are generally NP-complete [16]. One possible approach to
team problems of this type is to use an approximation technique
to obtain a suboptimal strategy within a fixed bound of the glob-
ally optimal solution [17]. Another set of results pertains to a
class of problems for which the cost satisfies a property known
as multimodularity, which allows the characterization of the set
of person-by-person optimal solutions and efficient algorithms
for searching for a globally optimal solution [18]. Despite the
fact that discrete team decision problems are inherently diffi-
cult to solve, the remote estimation problem formulated in this
paper admits a structural characterization of globally optimal so-
lutions. Our results either significantly reduce the search space,
allowing for the numerical search for globally optimal solutions,
or solve it completely, depending on which of the two criteria
is used as the objective. The results reported here are exact and
do not make use of any approximation techniques.

Our problem is an instance of a one-shot, remote estima-
tion (real-time communication) problem over a multiple access
channel with independent discrete observations. The problem
of estimating independent continuous random variables over a
collision channel while minimizing a mean squared error cri-
terion was solved in [19], where it was shown the existence
of globally optimal deterministic transmission policies with a
threshold structure. Vasconcelos and Martins [19] also showed
that this result is independent of the probability distributions
of the observed random variables. Here, we solve two related
problems where the objective is to optimize a probability of
error criterion, which is a popular metric used in estimation of

discrete random variables, statistical hypothesis testing, and rate
distortion theory [20]. A related team decision problem involv-
ing the optimization of a probability of error criterion similar to
the one considered here was studied in [21], where the optimal
strategy is based on ideas from coding theory. An interesting
feature of our results is that the constraint imposed by the chan-
nel results in optimal policies for which only certain subsets
of the measurements are transmitted and others are not. This
is known as data reduction via censoring and was explored for
continuous observations with a mean squared error criterion in
[22].

Although our problem is based on a framework introduced
in [19], the techniques and results shown here do not follow
from our previous work and have not appeared elsewhere in the
literature.

C. Summary of Formulation and Main Results

We consider a system formed by a remote estimator and mul-
tiple sensors, in which each sensor makes an observation drawn
from a discrete random variable. Observations are independent
across sensors. Estimates of the observations are computed at
the remote estimator based on information sent through a colli-
sion channel by the sensors, which have the authority to decide
whether or not to transmit their measurements. The collision
channel is a model of interference-limited communication ac-
cording to which simultaneous transmissions cause a collision
to occur and be detected by the remote estimator. A given col-
lection of event-based transmission policies for the sensors is
termed solution. The main goal of this paper is to propose meth-
ods to compute globally optimal solutions. In Sections II and VI,
we formulate this paradigm as a team decision problem with re-
spect to two cost criteria: the aggregate probability of estimation
error; and the total probability of estimation error. The former
is a convex combination of the probabilities of estimation error
for each observation. In order to simplify the introduction of
concepts and methods, our results are derived first for the two-
sensor case, followed by extensions for an arbitrary number of
sensors. The results summarized in the following hold for any
number of sensors and for any probability mass functions of the
observed random variables, regardless the size of their support.

1) We show that there is a solution that globally minimizes
the aggregate probability of estimation error. Our result
can be stated precisely once we preselect a most probable
value and a second most probable value of each random
variable observed by a sensor. In particular, Theorems 1
and 3 show that it suffices to consider one of three strate-
gies for each sensor, according to which: (i) it transmits
when it observes all but the most probable value; or (ii)
it transmits when it observes the second most probable
value; or (iii) it never transmits. These results imply that
even when the support of the observations is infinite,
it suffices to sift through a finite set of candidate solu-
tions to find a globally optimal one. Using Theorem 3,
in Section VI-D we show that, for any parameter selec-
tion, the search for an optimal solution is practicable for
up to N = 16 sensors. In general, the cardinality of the
set of candidate solutions is exponential in the number
of sensors but, as we discuss in the following, there are
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important cases in which it becomes quadratic or even
one.

a) The i.i.d. case: In Theorem 4, we use symme-
try to show that if the observations are equally
distributed, then it suffices to consider a set of
1
2 (N + 1)(N + 2) candidate solutions. This is a
remarkable complexity reduction, when compared
to the general case discussed above, which, in the
worst case, implies a set of 3N candidate solutions.

b) The i.i.d. case with equal weights: If the obser-
vations are identically distributed and the weights
of the convex combination defining the cost are
equal, then we provide a closed-form globally op-
timal solution. More specifically, Theorem 5 shows
that there is a globally optimal solution in which
each sensor follows one of two policies, according
to which: (i) it transmits when it observes all but
the most probable value; or (ii) it transmits when
it observes the second most probable value. The
number of sensors adopting either policy is given
by a closed-form expression.

2) We obtain in closed form a solution that globally mini-
mizes the total probability of estimation error. Our result
can be stated precisely once we preselect a most proba-
ble value of each random variable observed by a sensor.
Notably, Theorems 2 and 6 prove that a solution in which
every sensor transmits when it observes all but the most
probable value is globally optimal.

D. Paper Organization

This paper is structured in seven sections, including the Intro-
duction. In Section II, we describe the problem setup for teams
of two sensors; and we define the two fidelity criteria used to
obtain optimal policies: the aggregate probability of estimation
error and the total probability of estimation error. In Section III,
we state the main structural results for a system with two sensors.
In Section IV, we prove the structural result for the aggregate
probability of error in the case of two sensors and, in Section V,
we prove the result for the total probability of error in the case
of two sensors. In Section VI, we present structural results for
teams of more than two sensors. The paper ends in Section VII
with conclusions and suggestions for future work.

E. Notation

We adopt the following notation: Functions and functionals
are denoted using calligraphic letters such as F or F . Sets are
represented in blackboard bold font, such as A. The cardinality
of a set A is denoted by |A|. The set of real numbers is denoted by
R. If A is a subset of B then B\A represents the set of elements
in B that are not in A. Discrete random variables, vectors of
discrete random variables, and discrete general random elements
are represented using upper case letters, such as W . Realizations
of W are represented by the corresponding lower case letter w.
The probability of an event E is denoted by P(E).

We also adopt the following conventions.
1) If A and B are two events for which P(B) = 0, then we

adopt the convention that P(A | B) = 0.

2) Consider that a subset W of Rn and a function
F : W → R are given. If W is the subset of elements
that maximize F , then arg maxα∈W F(α) is the greatest
element in W according to the lexicographical order.

II. PROBLEM SETUP: TWO SENSORS

Consider two independent discrete random variables X1 and
X2 taking values on finite or countably infinite alphabets X1
and X2 , respectively. Without loss of generality, we assume
that every element of X1 and X2 occurs with a strictly positive
probability. The probability mass functions (pmf) of X1 and X2
are denoted with pX 1 and pX 2 , respectively.

There are two sensors1 denoted by DM1 and DM2 that mea-
sure X1 and X2 , respectively. Each DMi observes a realiza-
tion of Xi , and must decide whether to remain silent or at-
tempt to transmit xi to the estimator. The decision to attempt a
transmission or not is represented by a binary random variable
Ui ∈ {0, 1}, where Ui = 1 denotes the decision to attempt a
transmission and Ui = 0 denotes the decision to remain silent.
The decision by DMi on whether to transmit is based solely
on its measurement xi , according to a transmission policy Ui

defined as follows.
Definition 1 (Transmission policies): The transmission pol-

icy for DMi is specified by a function Ui : Xi → [0, 1] that
governs a randomized strategy as follows:

P(Ui = 1 | Xi = xi)
def= Ui(xi), i ∈ {1, 2}. (1)

The set of all transmission policies for DMi is denoted by

Ui
def= [0, 1]|Xi |.
Assumption 1: We assume that the randomization, which

generates U1 and U2 , according to (1), is such that the pairs
(U1 ,X1) and (U2 ,X2) are independent, i.e.,

P(U1 = μ1 , U2 = μ2 ,X1 = α1 ,X2 = α2)

= P(U1 = μ1 ,X1 = α1)P(U2 = μ2 ,X2 = α2)

for all (μ1 , α1 , μ2 , α2) ∈ {0, 1} × X1 × {0, 1} × X2 .
Definition 2: The measurement Xi and the decision Ui by

DMi specify the random element Si , which will be used as a
channel input, as follows:

si
def=
{

(i, xi) if ui = 1
∅ if ui = 0

, i ∈ {1, 2}.

Each random element Si takes values in the set {∅} ∪ {(i,
αi) | αi ∈ Xi}, where the symbol ∅ denotes no-transmission.

Remark 1: Notice that S1 and S2 contain the identification
number of its sender. This allows the estimator to determine
unambiguously the origin of every successful transmission.

Definition 3 (Collision channel): The collision channel
takes S1 and S2 as inputs. The output Y of the collision channel
is characterized by the following deterministic map:

y = χ(s1 , s2)
def=

⎧⎪⎨
⎪⎩

s1 if s1 �= ∅, s2 = ∅

s2 if s1 = ∅, s2 �= ∅

∅ if s1 = ∅, s2 = ∅

C if s1 �= ∅, s2 �= ∅

(2)

where the symbol C denotes a collision.

1We use the terminology sensor and decision maker (DM) interchangeably
throughout the paper.
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Remark 2: The fact that the collision channel discerns be-
tween a collision C and the absence of a transmission (indicated
by ∅), makes it fundamentally different from the erasure channel
commonly found in the literature of remote control and estima-
tion, such as in [23]. This creates an opportunity to improve
estimation performance by implicitly encoding information in
C and ∅.

A. Aggregate Probability of Estimation Error Criterion

For any given pair of transmission policies (U1 ,U2) ∈ U1 ×
U2 , we start by considering the following fidelity criterion
consisting of a convex combination of the individual proba-
bilities of error of estimating X1 and X2 . Consider the cost
JA : U1 × U2 → R defined as

JA (U1 ,U2)
def= η1P(X1 �= X̂1) + η2P(X2 �= X̂2) (3)

where η1 , η2 > 0 are given positive constants satisfying η1 +
η2 = 1, and X̂1 , X̂2 are the estimates formed by the remote
estimator of the observations at the sensors X1 ,X2 .

The designer can choose the weights η1 and η2 to set the
relative priority of each of the random variables it is interested
in. It is straightforward to show that for any fixed pair of trans-
mission policies, the receiver that minimizes the cost in (3)
forms a maximum a posteriori (MAP) probability estimate of
the random variable Xi given the observed channel output Y as
X̂i = Ei(Y ), where the functions Ei : Y → Xi are defined as

Ei(y) def= arg max
α∈Xi

P(Xi = α | Y = y), i ∈ {1, 2}. (4)

Problem 1: Given a pair of probability mass functions pX 1

and pX 2 , find a pair of policies (U1 ,U2) in U1 × U2 that min-
imizes JA (U1 ,U2) in (3), subject to the communication con-
straint imposed by the collision channel of (2) and that the
estimator employs the MAP rule of (4).

Remark 3: Notice that E1 and E2 are implicit functions of the
transmission policies U1 and U2 . It is this coupling between the
transmission and estimation policies that makes this problem
nontrivial.

B. Total Probability of Estimation Error Criterion

Given a pair of transmission policies (U1 ,U2) ∈ U1 × U2 ,
we also consider the cost JB : U1 × U2 → R defined as

JB (U1 ,U2)
def= P({X1 �= X̂1} ∪ {X2 �= X̂2}) (5)

which accounts for the probability that at least one estimate is
incorrect.

In this case, for any fixed pair of transmission policies, the
receiver that minimizes the cost in (5) forms a MAP estimate
of the random variables (X1 ,X2) given the observed channel
output Y as (X̂1 , X̂2) = E(Y ), where the function E : Y →
X1 × X2 is defined as

E(y) def= arg max
(α1 ,α2 )∈X1 ×X2

P(X1 = α1 ,X2 = α2 | Y = y).

(6)
Problem 2: Given a pair of probability mass functions pX 1

and pX 2 , find a pair of policies (U1 ,U2) in U1 × U2 that min-
imizes JB (U1 ,U2) in (5), subject to the communication con-
straint imposed by the collision channel of (2) and that the
estimator employs the MAP rule of (6).

Definition 4 (Global optimality): A pair of transmission
policies (U�

1 ,U�
2 ) in U1 × U2 is globally optimal for the cost

J (U1 ,U2) if the following holds:

J (U�
1 ,U�

2 ) ≤ J (U1 ,U2) , (U1 ,U2) ∈ U1 × U2 . (7)

C. Motivating Example

Sensor scheduling is one way to guarantee that collisions
never occur. However, collision avoidance through sensor
scheduling is not optimal, in general. In order to illustrate this,
consider the simple scenario where X1 and X2 are indepen-
dent Bernoulli random variables with nondegenerate probabil-
ity mass functions pX 1 and pX 2 , respectively. Using a sensor
scheduling policy where only one sensor is allowed to access
the channel in Problem 1, the best possible performance is
given by

J sch
A = 1 − max

i∈{1,2}
max

x∈{0,1}
ηipXi

(x) > 0.

However, it is possible to achieve zero aggregate probability of
error for any independent Bernoulli X1 and X2 , by using the
following pair of deterministic policies (U�

1 ,U�
2 ):

U�
i (xi) = xi, i ∈ {1, 2}.

The pair (U�
1 ,U�

2 ) achieves zero aggregate probability of error
because U1 and U2 , or equivalently in this case X1 and X2 ,
can be exactly recovered from the channel output Y . This glob-
ally optimal solution exploits the distinction that the channel in
(2) makes between no-transmissions and collisions to convey
information about the observations to the remote estimator.

Motivated by this example, we are interested in investigating
whether we can find globally optimal solutions for any given
pX 1 and pX 2 .

D. Person-by-Person Optimality

Problems with a nonclassical information pattern, such as
the ones considered here, are generally nonconvex. Therefore,
determining globally optimal solutions is often intractable. In
Sections IV and V, we proceed to show that there are glob-
ally optimal solutions for Problems 1 and 2 with a convenient
structure, for which numerical optimization is possible. This
is accomplished via the following concept of person-by-person
optimality [15], [18].

Definition 5 (Person-by-person optimality): A policy pair
(U�

1 ,U�
2 ) ∈ U1 × U2 is said to satisfy the person-by-person

necessary conditions of optimality for the cost J (U1 ,U2) if
the following holds:

J (U�
1 ,U�

2 ) ≤ J (U1 ,U�
2 ), U1 ∈ U1

J (U�
1 ,U�

2 ) ≤ J (U�
1 ,U2), U2 ∈ U2 . (8)

A policy pair that satisfies (8) is also called a person-by-person
optimal solution.

III. MAIN RESULTS: TWO SENSORS

The main results of this paper characterize the struc-
ture of globally optimal solutions for the problems stated in
Sections II-A and II-B. One important feature of the following
results is that they are independent of the distributions of the ob-
servations, and are valid even when the alphabets are countably
infinite.
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Before we continue, we proceed to define a few important
policies that will be used to characterize certain globally optimal
solutions.

Definition 6 (A useful total order): For every discrete ran-
dom variable W , taking values in W , we define a totally or-
dered set [W , pW ] in which, for any w and w̃ in [W , pW ],
w ≺ w̃ holds when pW (w) < pW (w̃) or, for the case in which
pW (w) = pW (w̃), when w < w̃. The elements of [W , pW ] are
enumerated so that w[1] is the maximal element and w[i+1] ≺
w[i] , for every integer i greater than or equal to 1. We also adopt
qW to denote the following pmf:

qW (i) def= P(W = w[i]), 1 ≤ i ≤ |W |. (9)

Definition 7 (Candidate optimal policies): Given a discrete
random variable W , we use the total order in [W , pW ] to define

V0
W (α) def= 0, α ∈ W

V1
W (α) def=

{
0 if α = w[1]

1 otherwise
, α ∈ W

V2
W (α) def=

{
1 if α = w[2]

0 otherwise
, α ∈ W .

Remark 4: Using the policy V0
W means that the sensor never

transmits; policy V1
W means that the sensor transmits when it

observes all but a preselected most probable value; and policy
V2

W means that the sensor transmits when it observes a prese-
lected second most probable value. Notice that the preselected
most probable symbol is never transmitted when these policies
are used.

Theorem 1 (Globally optimal solutions for Problem 1):
There exists a globally optimal solution (Ǔ1 , Ǔ2) for which each
component Ǔi is one of the three policies in {V0

Xi
,V1

Xi
,V2

Xi
},

for i ∈ {1, 2}.
Remark 5: Theorem 1 implies that, regardless of the car-

dinality of X1 and X2 , one can determine a globally optimal
solution by checking at most nine candidate solutions. In fact,
Corollary 1 shows in Section IV-C that one can reduce the search
to at most five candidate solutions.

Theorem 2 (Globally optimal solution for Problem 2): The
policy pair (V1

X 1
,V1

X 2
) is a globally optimal solution.

Using the person-by-person optimality approach,
Sections IV-C and V-B present proofs for Theorems 1
and 2, respectively.

IV. GLOBALLY OPTIMAL SOLUTIONS FOR PROBLEM 1

The person-by-person approach to prove Theorem 1 involves
the analysis of the associated problem of optimizing the pol-
icy of a single decision maker while keeping the policy of the
other sensor fixed. This problem is precisely formulated and
solved in Section IV-B, where we also show that it is a concave
minimization problem. Such problems are generally intractable,
but we were able to find solutions using a two-step approach.
More specifically, we obtain a lower bound that holds for any
feasible policy (the converse part) and then we provide a struc-
tured deterministic policy that achieves the lower bound (the
achievability part).

We start by using Bayes’ rule to rewrite the cost in (3) in a
way that clarifies the effect of modifying the policy of a single
decision maker. More specifically, from the perspective of DMi ,

Fig. 2. Equivalent single DM estimation problem over a collision
channel.

i ∈ {1, 2}, assuming that the policy used by DMj is fixed to
Ũj ∈ Uj , j �= i, we have

JA (Ui , Ũj ) = ηiP(Xi �= X̂i) + ηj (ρŨj
P(Ui = 1) + θŨj

)
(10)

where ρŨj
and θŨj

are defined as

ρŨj

def= P(Xj �= X̂j | Ui = 1) − P(Xj �= X̂j | Ui = 0) (11)

θŨj

def= P(Xj �= X̂j | Ui = 0). (12)

The terms ρŨj
and θŨj

are constant inUi . In particular, ηjρŨj
can

be interpreted as a communication cost incurred by DMi when
it attempts to transmit. A similar interpretation has been used in
[19] and relates this problem to the multistage estimation case
with limited actions solved in [8].

A. Communication Cost and Offset Terms

We proceed to characterize the communication cost (10) and
the offset terms in further detail.

Proposition 1: If X1 and X2 are independent and Assump-
tion 1 holds, then for i, j ∈ {1, 2} and i �= j, the terms ρŨj

and
θŨj

are constant in Ui , are nonnegative, and upper bounded by 1.
Proof: See Appendix A. �
Proposition 1 will be used in the proof of Theorem 1.

B. Equivalent Single DM Subproblem

In order to use the person-by-person approach to prove
Theorem 1, we need to consider the subproblem of optimiz-
ing the transmission policy of one decision maker, which we
call DM, while assuming that the policy of D̃M, representing
the other sensor, is given and fixed. From the perspective of DM,
the problem is depicted in Fig. 2. Here, DM observes a random
variable X and must decide whether to attempt a transmission or
to remain silent. A Bernoulli random variable D, which is inde-
pendent of X , accounts for the effect that transmission attempts
by D̃M have on the occurrence of collisions. The contribution
of the policy of D̃M toward the cost is quantified in (10). Before
we state the subproblem precisely in Problem 3, we proceed
with a few definitions.

In order to emphasize the fact that D, which is determined
by the fixed policy for D̃M, is now a given Bernoulli random
variable that can be viewed by DM as a source of randomization
inherent to the channel, we adopt the following definition.

Definition 8 (Stochastic point-to-point collision channel):
Let D be a given Bernoulli random variable with parameter
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β for which P(D = 1) = β. An associated point-to-point
collision channel with input S and output Y = χ̃(S,D) is
specified by the following map:

χ̃(s, d) def=

{
∅ if s = ∅

s if s �= ∅, d = 0
C if s �= ∅, d = 1

(13)

where s is in the input alphabet S
def= X ∪ {∅}. The output al-

phabet of the channel is Y
def= S ∪ {C}.

The input to the channel is governed by DM according to

s
def=
{

x if u = 1
∅ if u = 0.

The following is the probability of attempting a transmission
for a given measurement α

P(U = 1 | X = α) = U (α), U ∈ U , α ∈ X (14)

where U is the transmission policy used by DM.
Assumption 2: We assume that the randomization that gen-

erates U according to (14) is such that D is independent from
the pair (U,X).

Finally, based on (10), the cost to be minimized by DM and
the remote estimator, JA : U → R, is defined as follows:

JA (U ) def= P(X �= X̂) + 	P(U = 1) (15)

where U represents a transmission policy for DM and 	 can be
viewed as a communication cost induced by D̃M.

Problem 3: Consider β in [0, 1], a nonnegative 	 and a dis-
crete random variable X are given. Find a policy U ∈ U
that minimizes the cost JA (U ) in (15), subject to (13) with
P(D = 1) = β and that the estimate X̂ = E (Y ) is generated
according to the following MAP rule:

E (y) def= arg max
α∈X

P(X = α | Y = y), y ∈ Y .

We will provide a solution to Problem 3 using the following
two lemmata.

Lemma 1: The cost JA (U ) is concave on U .
Proof: Using the law of total probability, we rewrite the cost

JA (U ) as

JA (U ) =
(
βP(X �= X̂ | U = 1,D = 1) + 	

)
P(U = 1)

+P(X �= X̂ | U = 0)P(U = 0).

Simplifying this expression using the relationships developed
in Appendix A, we get

JA (U ) = 1 + (	 + β − 1)P(U = 1)

− P(X = E (∅) | U = 0)P(U = 0)

− βP(X = E (C) | U = 1)P(U = 1).

Using the definition of the MAP estimator, we can write the
following probabilities in terms of U :

P(X = E(∅) | U = 0) = max
α∈X

(1 − U (α))p(α)
P(U = 0)

P(X = E(C) | U = 1) = max
α∈X

U (α)p(α)
P(U = 1)

.

Finally, the cost can be rewritten as follows:

JA (U ) = 1 + (	 + β − 1)
∑
α∈X

U (α)p(α)

− max
α∈X

(
1 − U (α)

)
p(α) − β max

α∈X
U (α)p(α). (16)

The proof is concluded by using standard arguments found in
[24, Ch. 3] to establish the concavity of (16). �

Lemma 2: For β ∈ [0, 1] and 	 ≥ 0, the following policy
minimizes JA (U ):

U �
β ,	 =

⎧⎪⎨
⎪⎩

V1
X if 0 ≤ 	 ≤ 1 − β

V2
X if 1 − β < 	 ≤ 1

V0
X otherwise.

Proof: Since JA (U ) is continuous and U is compact with
respect to the weak∗ topology,2 a minimizer exists [25]. Due
to the concavity of JA (U ) established in Lemma 1, the min-
imizer must lie on the boundary of the feasible set. Moreover,
the search can be further constrained to the corners of the |X|-
dimensional hypercube that describes the feasible set. This im-
plies that Problem 3 admits an optimal deterministic policy.
Hence, it suffices to optimize with respect to policies U that
take values in {0, 1}. For each such policy, we use the alphabet
partition X = XU ,0 ∪ XU ,1 defined as follows:

XU ,k def= {α ∈ X | U (α) = k}, k ∈ {0, 1}.
We proceed to find an optimal deterministic policy by solving

the equivalent problem of searching for an optimal partition. In
spite of the fact that the number of partitions grows exponentially
with |X|, as we show next, we can use the cost structure to render
the search for an optimal partition tractable. We start by using
the partitions to rewrite the cost as follows:

JA (U ) = 1 + (	 + β − 1)
∑

α∈XU , 1

pX (α)

− max
α∈XU , 0

pX (α) − β max
α∈XU , 1

pX (α).

We will obtain a lower bound that holds for every deterministic
policy U ∈ U , and show that U �

β ,	 always achieves it.
First, consider the case when 	 > 1 − β. Using the following

inequality:
∑

α∈XU , 1

pX (α) ≥ max
α∈XU , 1

pX (α)

we conclude that the cost satisfies the following lower bound:

JA (U ) ≥ 1 − (1 − 	) max
α∈XU , 1

pX (α) − max
α∈XU , 0

pX (α).

The right-hand side of the above-mentioned inequality can be
minimized by assigning x[1] to the set XU ,0 . If 1 − 	 ≥ 0,
we assign x[2] to the set XU ,1 , otherwise we set XU ,1 = ∅.
Therefore, we obtain the following lower bound for the cost:

JA (U ) ≥ 1 − max{0, 1 − 	}qX (2) − qX (1).

2This technical detail can be ignored when |X| < ∞.
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When 1 − β ≤ 	, this lower bound is met with equality by
the policy U �

β ,	 , for which the cost is given by

JA (U �
β ,	) =

{
1 − qX (1) if 	 > 1

1 − (1 − 	)qX (2) − qX (1) otherwise.

Similarly, when 0 ≤ 	 ≤ 1 − β, we have∑
α∈XU , 1

pX (α) ≤ 1 − max
α∈XU , 0

pX (α).

Therefore, for every U in U , we establish the following lower
bound on the cost:

JA (U ) ≥ (	 + β)
(

1 − max
α∈XU , 0

pX (α)
)
− β max

α∈XU , 1
pX (α).

The right-hand side of the above-mentioned inequality can be
minimized by assigning x[1] to the set XU ,0 . If 1 − 	 ≥ 0, we
assign x[2] to the set XU ,1 . Therefore, we obtain the following
lower bound for the cost:

JA (U ) ≥ (	 + β)
(
1 − qX (1)

)− βqX (2).

The policy U �
β ,	 achieves this lower bound as the following

calculation shows:

JA (U �
β ,	) = 1 + (	 + β − 1)

∑
α∈X\{x [ 1 ] }

pX (α)

− qX (1) − β max
α∈X\{x [ 1 ] }

pX (α)

=
(
	 + β)(1 − qX (1)

)− βqX (2).

�
Remark 6: Lemma 2 provides a solution to Problem 3 de-

scribed only in terms of β, 	 and the two most probable outcomes
of X . As a particular case, when β is zero and 	 is in [0, 1], the
optimal policy is

U �
0,	(α) =

{
0 if α = x[1]
1 otherwise.

This result is related to a similar problem solved by Imer and
Basar in [8].

C. Proof of Theorem 1

We will now apply the results in Section IV-B to reduce the
search space of possible optimal policies for each sensor in
Problem 1. The strategy is to use a person-by-person optimality
approach together with Lemma 2.

Proof of Theorem 1: Consider the cost JA (U1 ,U2) in
Problem 1. Arbitrarily fixing the policy Ũ2 of DM2 , we have

JA (U1 , Ũ2) ∝ P(X1 �= X̂1) +
η2

η1

(
ρŨ2

P(U1 = 1) + θŨ2

)
.

The problem of minimizing JA (U1 , Ũ2) over U1 ∈ U1 is
equivalent to solving an instance of Problem 3 with parame-
ters 	 and β selected as follows:

	 =
η2

η1
ρŨ2

and β = P(U2 = 1).

Hence, from Lemmas 1 and 2, for each policy Ũ2 in U2 there
is at least one choice for U�

1 in {V0
X 1

,V1
X 1

,V2
X 1

} for which

TABLE I
VALUE OF THE COST FUNCTION JA (U1 ,U2 ) AT EACH OF THE NINE

CANDIDATE SOLUTIONS SPECIFIED IN THEOREM 1

JA (U�
1 , Ũ2) ≤ JA (U1 , Ũ2) holds for any U1 in U1 . Since this

is true regardless of our choice of Ũ2 and it also holds if we
were to fix the policy of DM1 and optimize U2 , we conclude
that given any person-by-person optimal pair (U�

1 ,U�
2 ), there

is a pair (Ǔ1 , Ǔ2) in {V0
X 1

,V1
X 1

,V2
X 1

} × {V0
X 2

,V1
X 2

,V2
X 2

},
for which JA (Ǔ1 , Ǔ2) ≤ JA (U�

1 ,U�
2 ) holds. The proof of

Theorem 1 is complete once we recall that every globally opti-
mal solution is also person-by-person optimal. �

Remark 7: There may be other optimal solutions that do not
have the same structure of the policies in Theorem 1. Note
that the performance of an optimal remote estimation system
is determined by the probabilities of the two most probable
outcomes of X1 and X2 . Also, the optimal performance of a
system with binary observations is always zero, i.e., independent
binary observations can be estimated perfectly from the output
of the collision channel with two sensors. The globally optimal
solution described in the motivating example of Section II-C
also fits in the structure of the globally optimal solutions of
Theorem 1.

We proceed to evaluate the performance of each of the nine
candidate solutions listed in Theorem 1 using the expressions in
(11) and (12), and the following quantity:

tXi

def= 1 − qXi
(1) − qXi

(2), i ∈ {1, 2}
where qW is as defined in (9). More specifically, for each policy
type, we use the following.

1) If Ui = V1
Xi

, then P(Ui = 1) = 1 − qXi
(1), ρUi

= tXi

and θUi
= 0.

2) If Ui = V2
Xi

, then P(Ui = 1) = qXi
(2), ρUi

= 0 and
θUi

= tXi
.

3) If Ui = V0
Xi

, then P(Ui = 1) = 0, ρUi
= 0 and θUi

=
1 − qXi

(1).
We construct Table I, which lists the cost evaluated for all can-

didate solutions. It can be verified by inspection that the policy
pairs for which m is 6, 7, 8, and 9 are always outperformed by at
least one of the others. This observation leads to the following
corollary.

Corollary 1: The optimal cost obtained from solving
Problem 1 is given by

J �
A = min

1≤m≤5
J (m )

A (17)

where J (m )
A is specified in Table I.
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D. Examples

Corollary 1 further reduces the cardinality of the set of can-
didate solutions for Problem 1 from 9 to 5. We will now explore
the role that pX 1 and pX 2 have in determining which of the solu-
tions (m = 1 to 5 in Table I) is globally optimal. In the examples
given in the following, we assume3 that η1 = η2 , which further
reduces our search to policy pairs m = 1, 2, and 3. We will use
the following quantities:

J (2)
A − J (3)

A = −tX 1 (1 − qX 2 (2)) + tX 2

(
1 − qX 1 (2)

)
J (2)

A − J (1)
A = tX 2 (qX 1 (1) − tX 1 )

J (3)
A − J (1)

A = tX 1 (qX 2 (1) − tX 2 ).

Example 1 (Uniformly distributed observations): For uni-
formly distributed observations, we have

pXi
(x) =

1
Ni

, x ∈ {1, 2, . . . , Ni}, i ∈ {1, 2}.

Hence, the probabilities of the two most probable outcomes are

qXi
(1) = qXi

(2) =
1
Ni

and the aggregate probability of all other outcomes is given by

tXi
= 1 − 2

Ni
, i ∈ {1, 2}.

Without loss of generality, we assume that N1 , N2 ≥ 3 and
N1 ≤ N2 . Since

J (2)
A − J (3)

A =
1

N1
− 1

N2
≥ 0

J (3)
A − J (1)

A =
(

1 − 2
N1

)
×
(

3
N2

− 1
)

≤ 0

our assumptions imply that J �
A = J (3)

A and the pair of policies
corresponding to m = 3 is globally optimal.

Example 2 (Geometrically distributed observations): For
geometrically distributed observations with parameters π1 and
π2 , we have

pXi
(x) = (1 − πi)xπi, x ≥ 0, i ∈ {1, 2}.

The probabilities of the two most probable outcomes for each
sensor are

qXi
(1) = πi

qXi
(2) = (1 − πi)πi

and the aggregate probability of all other outcomes is

tXi
= (1 − πi)2 , i ∈ {1, 2}.

Note that J (1)
A is less than or equal to J (2)

A and J (3)
A if

and only if qXi
(1) ≥ tXi

, for i ∈ {1, 2}, or equivalently, if the
following holds:

−π2
i + 3πi − 1 ≥ 0, i ∈ {1, 2}.

3In this case, the weights η1 and η2 are irrelevant and we may assume that
they are both equal to 1.

Fig. 3. Partition of the parameter space indicating where each policy
pair is globally optimal for Example 2. The circled number corresponds
to m in Table I.

Also, J (2)
A is less than or equal to J (3)

A if and only if the
following holds:

(1 − π2)2π1 ≤ (1 − π1)2π2

which is satisfied if π1 ≤ π2 . This yields the partitioning of
the parameter space (π1 , π2) ∈ [0, 1]2 into the three regions
depicted in Fig. 3. Each region is labeled according to the policy
pair that is optimal within it.

Example 3 (Poisson distributed observations): For Poisson
distributed observations with parameters λ1 and λ2 , which we
assume here to be both greater than 1, the probabilities of the
two most probable outcomes are

qXi
(1) = qXi

(2) =
λ

λi �
i


λi�!e
−λi

and the aggregate probability of all other outcomes is

tXi
= 1 − 2

λ

λi �
i


λi�!e
−λi , i ∈ {1, 2}.

Using the same argument as in the previous example, we note
that J (1)

A is less than or equal to J (2)
A and J (3)

A if and only if
qXi

(1) ≥ tXi
is satisfied, or equivalently, the following holds:

λ

λi �
i


λi�!e
−λi ≥ 1

3
, i ∈ {1, 2}. (18)

In order to check whether (18) holds, we define the following
function:

F(λ) def=
λ
λ�


λ�!e
−λ − 1

3
.

It can be shown that F(λ) is greater than or equal to zero if and
only if 0 < λ ≤ λ̄ ≈ 1.5121. Hence, we conclude that (18) holds
if and only if 1 ≤ λi ≤ λ̄ for i ∈ {1, 2}. Finally, J (2)

A ≤ J (3)
A
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Fig. 4. Partition of the parameter space indicating where each policy
pair is globally optimal for Example 4. The circled number corresponds
to m in Table I.

holds if and only if

λ

λ2 �
2


λ2�!e
−λ2 ≥ λ


λ1 �
1


λ1�!e
−λ1

which is satisfied when λ1 ≥ λ2 .
Example 4 (Identically distributed observations): When the

observations are identically distributed, i.e., pX 1 = pX 2 , and
X1 = X2 , we have

J (2)
A = J (3)

A =
(
1 − qX 1 (1) − qX 1 (2)

)(
1 + qX 1 (2)

)
and

J (1)
A =

(
1 − qX 1 (1) − qX 1 (2)

)(
2 − 2qX 1 (1)

)
.

Therefore, J (2)
A ≤ J (1)

A if and only if

2qX 1 (1) + qX 1 (2) ≤ 1.

Recalling that qX 1 (1) ≥ qX 1 (2), we have the partitioning of the
parameter space [0, 1]2 according to Fig. 4.

V. GLOBALLY OPTIMAL SOLUTIONS TO PROBLEM 2

In this section, we provide a proof for Theorem 2, which
characterizes transmission policies for the sensors that minimize
the probability that either X̂1 or X̂2 , or both, give an incorrect
estimate. The cost, which was initially defined as (5), is now
rewritten as follows:

JB (U1 ,U2) = P(W �= Ŵ ) (19)

where W
def= (X1 ,X2) and the estimate Ŵ

def= E(Y ) is deter-
mined by the following MAP rule:

E(y) = arg max
ω∈W

P(W = ω | Y = y), y ∈ Y

where W = X1 × X2 .
The overall proof strategy is centered on the characterization

of globally optimal solutions via the person-by-person optimal-
ity approach. This is possible in spite of the fact that the cost
JB (U1 ,U2) does not admit the additive decomposition used in
Problem 1.

We start by stating two propositions that provide identities
useful in Section V-A, where we use the total probability law to
rewrite the cost in a convenient way.

Proposition 2: The following holds for Problem 2:

P(W = Ŵ | Y = C) = max
α1 ∈X1

P(X1 = α1 | U1 = 1)

× max
α2 ∈X2

P(X2 = α2 | U2 = 1)

and

P(W = Ŵ | Y = ∅) = max
α1 ∈X1

P(X1 = α1 | U1 = 0)

× max
α2 ∈X2

P(X2 = α2 | U2 = 0).

Proof: See Appendix B. �
Proposition 3: The following holds for Problem 2:

P
(
W = Ŵ | Y = (i,Xi)

)
= max

αj ∈Xj

P(Xj = αj | Uj = 0)

with i, j ∈ {1, 2} and i �= j.
Proof: See Appendix B. �

A. Equivalent Single DM Subproblem

Here, we adopt an approach analogous to the one used in
Section IV-B to prove Theorem 1. In particular, we proceed to
provide preliminary results that will be used in Section V-B to
prove Theorem 2 via the person-by-person approach.

A key step is to characterize Problem 2 from the viewpoint
of one decision maker, when the transmission policy of the
other is given and fixed. Unlike Problem 1, in which the cost
structure from the viewpoint of each decision maker allowed us
to make an analogy with a remote estimation problem subject
to communication costs, Problem 2 does not admit an insightful
decomposition. Fortunately, we can still use the same techniques
applied to this less convenient cost.

Similar to the approach adopted in Section IV-B, for a given
discrete random variable X , we define U to be the class of all
functions U with domain X taking values in [0, 1]. Elements
of U represent policies that govern transmission in the same
manner described in Section IV-B, with the difference that we
now consider the cost JB : U → R defined as follows:

JB (U ) def= 1 − τ max
α∈X

U (α)pX (α) − 	
∑
α∈X

U (α)pX (α)

− (	 + β) max
α∈X

(
1 − U (α)

)
pX (α) (20)

where 	, τ , and β are nonnegative constants.
Lemma 3: The cost JB is concave on U .
Proof: The proof follows from standard arguments that can

be found in [24, Ch. 3]. �
Lemma 4: Let X be a given discrete random variable. If

τ ≤ β, then V1
X minimizes JB .

Proof: From Lemma 3, the cost is concave in U . Therefore,
without loss in optimality, we can constrain the optimization to
the class of deterministic strategies. For any deterministic policy
U ∈ U , define

XU ,k def= {α ∈ X | U (α) = k}, k ∈ {0, 1}.
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Constraining the policies to be deterministic and using the no-
tation defined above, the cost becomes

JB (U ) = 1 − τ max
α∈XU , 1

pX (α) − 	
∑

α∈XU , 1

pX (α)

− (	 + β) max
α∈XU , 0

pX (α). (21)

Since ∑
α∈XU , 1

pX (α) ≤ 1 − max
α∈XU , 0

pX (α)

we obtain the following inequality, which holds for every deter-
ministic policy U ∈ U :

JB (U ) ≥ 1 − 	 − τ max
α∈XU , 1

pX (α) − β max
α∈XU , 0

pX (α).

If τ ≤ β, then the lower bound on the right-hand side of the
inequality above can be minimized by assigning the symbol x[1]

to XU ,0 and x[2] to XU ,1 , yielding

JB (U ) ≥ 1 − 	 − τqX (2) − βqX (1). (22)

The lower bound in (22) is achieved when U = V1
X . �

B. Proof of Theorem 2

We are now equipped to present a proof for Theorem 2.
Proof of Theorem 2: In order to use the person-by-person

optimality approach, we will rewrite the cost from the perspec-
tive of a single decision maker. The law of total probability and
the results in Propositions 2 and 3 allow us to re-express the cost
as follows:

JB (U1 ,U2)

= 1 − max
α1 ∈X1

U1(α1)pX 1 (α1) max
α2 ∈X2

U2(α2)pX 2 (α2)

− max
α1 ∈X1

(
1 − U1(α1)

)
pX 1 (α1) max

α2 ∈X2

(
1 − U2(α2)

)
pX 2 (α2)

−
∑

α1 ∈X1

U1(α1)pX 1 (α1) max
α2 ∈X2

(
1 − U2(α2)

)
pX 2 (α2)

−
∑

α2 ∈X2

U2(α2)pX 2 (α2) max
α1 ∈X1

(
1 − U1(α1)

)
pX 1 (α1). (23)

We start by fixing the transmission policy of DM2 to an
arbitrary choice Ũ2 . We use (23) to write the cost from the
perspective of DM1 as follows:

JB (U1 , Ũ2) = 1 − τ̃2 max
α1 ∈X1

U1(α1)pX 1 (α1)

− 	̃2

∑
α1 ∈X1

U1(α1)pX 1 (α1)

− (	̃2 + β̃2) max
α1 ∈X1

(
1 − U1(α1)

)
pX 1 (α1)

where

β̃2
def=
∑

α2 ∈X2

Ũ2(α2)pX 2 (α2)

	̃2
def= max

α2 ∈X2

(
1 − Ũ2(α2)

)
pX 2 (α2)

and

τ̃2
def= max

α2 ∈X2

Ũ2(αj )pX 2 (α2).

Note that for any given Ũ2 in U2 , we have τ̃2 ≤ β̃2 . Hence, from
Lemma 4, JB (V1

X 1
, Ũ2) ≤ JB (U1 , Ũ2) holds for any U1 in U1 .

Given the facts that the choice for Ũ2 was arbitrary and that we
could alternatively have chosen to fix the policy of sensor DM1

to an arbitrary selection Ũ1 and optimized with respect to U2 ,
we conclude that (V1

X 1
,V1

X 2
) is a globally optimal solution for

Problem 2. �

VI. EXTENSIONS TO MORE THAN TWO SENSORS

We proceed to extending our results to allow for a team of
N sensors that access independent observations {X1 , . . . , XN }
and communicate over a collision channel that can only sup-
port one transmission. Let U = (U1 , . . . , UN ) denote the N -
tuple of transmission decision variables, and U−i denote the
N − 1 tuple obtained by excluding Ui from U . Similarly, we
use U = (U1 , . . . ,UN ) to represent the N -tuple of transmission
policies and U−i is obtained by omitting Ui from U .

Assumption 3: The transmission decision Ui of each DMi is
generated as a function of Ui in the same manner as described in
Definition 1, with the evident modification that we now consider
that i is in {1, . . . , N}. We also assume that the underlying
randomization that generates U from U is such that the pairs
{(Ui,Xi)}N

i=1 are mutually independent.
Assumption 4: The random elements S1 to SN are generated

in the same manner as described in Definition 2, with the evident
modification that we now consider that i is in {1, . . . , N}.

The collision channel operates as follows.
Definition 9: The collision channel accepts inputs S1 to SN .

The output of the collision channel is specified by the following
map:

y = χ(s1 , . . . , sN ) def=

{
si if si �= ∅ and sj = ∅, j �= i
∅ if si = ∅, 1 ≤ i ≤ N
(C, u) otherwise.

(24)
Remark 8: Notice that χ defined above is a natural extension

of (2). The only difference is that, when there is a collision, χ
also conveys the decision vector U . Notice that both channels
are equivalent when N is two because, in that case, a collision
can only occur when U1 and U2 are both one. Hence, if the
estimator is informed that a collision occurred and N is two, the
additional information on U provided by χ becomes redundant.
The recovery of U at the receiver when there are collisions, as
is assumed for χ, has been demonstrated empirically in [26].

A. Extension of Theorem 1 to More Than Two Sensors

Consider a version of Problem 1 in which there are N sensors,
and the cost is as follows:

JA (U) def=
N∑

k=1

ηkP(Xk �= X̂k )

where ηk are positive constants that sum up to 1. The following
is the extended version of Theorem 1.

Theorem 3: There exists a globally optimal solution
(Ǔ1 , . . . , ǓN ) where each Ǔk is in {V0

Xk
,V1

Xk
,V2

Xk
}, for k in

{1, . . . , N}.
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Proof: Select arbitrary i in {1, . . . , N} and an N − 1 tuple
Ũ−i , and write the cost from the perspective of DMi as follows:

JA (Ui , Ũ−i) = ηiP(Xi �= X̂i) + ρŨ−i
P(Ui = 1) + θŨ−i

where the “communication cost” and offset terms are given by

ρŨ−i

def=
∑
j �=i

ηj

(
P(Xj �= X̂j |Ui = 1) − P(Xj �= X̂j |Ui = 0)

)

and

θŨ−i

def=
∑
j �=i

ηjP(Xj �= X̂j | Ui = 0).

We can conclude by inspection that minimizing the cost above
with respect to DMi is equivalent to Problem 3 with 	 and β
given by

	
def=

ρŨ−i

ηi

β
def= 1 −

∏
j �=i

P(Uj = 0).

Here, β is the probability that a transmission by DMi will collide
with a transmission by at least one of the other N − 1 sensors.
At this point, the proof follows from Lemma 2. �

B. Further Results to Problem 1 With More Than Two
Sensors

In the absence of a structural result, such as Theorem 3,
the only systematic approach to Problem 1 is to exhaustively
search over all possible deterministic solutions, which becomes
impractical unless N and the cardinalities of X1 , . . . , XN are
small. Fortunately, from Theorem 3, we conclude that even if
there are observations with infinite support, it suffices to sift
through a set of 3N candidate solutions. We now show that we
can further leverage Theorem 3 to obtain remarkable complexity
reductions for the two cases of practical significance discussed
in Theorems 4 and 5.

Standard probability methods and algebraic manipulation
lead to the following proposition, which we state without proof.
This result will be useful in the proof of Theorem 4.

Proposition 4: For every possible N -tuple of policies U =
(U1 , . . . ,UN ) where each Uk is in {V0

Xk
,V1

Xk
,V2

Xk
}, for k in

{1, . . . , N}, the following holds:

P(Xk �= X̂k) =

⎧⎪⎨
⎪⎩

1 − qXk
(1) if Uk = V0

Xk

tXk

(
1 −∏j �=k P(Uj = 0)

)
if Uk = V1

Xk

tXk
if Uk = V2

Xk

(25)
and

P(Uj = 0) =

⎧⎪⎨
⎪⎩

1 if Uj = V0
Xj

qXj
(1) if Uj = V1

Xj

1 − qXj
(2) if Uj = V2

Xj
.

(26)

Theorem 4: Consider that there are N sensors and let them
be labeled so that the weights defining the cost for Problem 1 are
nonincreasing (η1 ≥ η2 ≥ · · · ≥ ηN ). Suppose that N is greater
than one and that the observations are identically distributed as
Xk ∼ pX , for k ∈ {1, . . . , N}.

Under these conditions, there are nonnegative integers n�
1

and n�
2 , satisfying n�

1 + n�
2 ≤ N , for which the following is a

globally optimal solution to Problem 1:

U� = ( V1
X , . . . ,V1

X︸ ︷︷ ︸
n�

1 tuple

, V2
X , · · · ,V2

X︸ ︷︷ ︸
n�

2 tuple

, V0
X , · · · ,V0

X︸ ︷︷ ︸
(N −n�

1 −n�
2 ) tuple

). (27)

Remark 9: Theorem 4 implies that the search for an optimal
solution is parameterized by two nonnegative integers n1 and n2
satisfying n1 + n2 ≤ N . There are 1

2 (N + 1)(N + 2) elements
in this feasible set. Therefore, the complexity of searching for a
globally optimal solution in this case is quadratic in the number
of sensors.

Proof of Theorem 4: Consider an N -tuple of transmission
policies U for Problem 1 where n1 sensors use the policy V1

X ,
n2 sensors use the policy V2

X , and N − n1 − n2 sensors use
the policy V0

X . Let Ŭ be an N -tuple of transmission policies
constructed by rearranging the transmission policies of the in-
dividual sensors in U such that the n1 sensors corresponding to
the n1 largest weights use V1

X ; the following n2 sensors corre-
sponding to the n1 + 1 to n1 + n2 largest weights use V2

X ; and
the remaining N − n1 − n2 sensors use V0

X .
From Proposition 4, the following chain of inequalities holds:

P(Xk �= Xk )

∣∣∣∣∣
Uk =V1

X

≤ P(Xk �= Xk )

∣∣∣∣∣
Uk =V2

X

≤ P(Xk �= Xk )

∣∣∣∣∣
Uk =V0

X

(28)

for k ∈ {1, . . . , N}. The fact that the weights are nonincreasing
and that (28) holds, imply that

JA (Ŭ) ≤ JA (U).

�

C. Problem 1 With i.i.d. Observations and Uniform
Weights

We will show that, using the structural result of Theorem 3, we
can solve Problem 1 exactly for an arbitrary number of sensors
with identically distributed observations and uniform weights.

Theorem 5: Let N greater than one represent the number of
sensors for Problem 1. If ηk = 1/N and the observations are
identically distributed as Xk ∼ pX , for k in {1, . . . , N}, then
the following solution is globally optimal for Problem 1:

U� =
( V1

X , . . . ,V1
X︸ ︷︷ ︸

n� tuple

, V2
X , . . . ,V2

X︸ ︷︷ ︸
(N −n� ) tuple

)

where n� is computed explicitly according to

n� = min
{⌊

qX (1)
1 − qX (1) − qX (2)

⌋
+ 1, N

}
.

Proof: See Appendix C. �
Remark 10: Theorem 5 is evidence that by using Theorem 3

and exploiting structure, one may arrive at exact solutions to
Problem 1 for an arbitrary number of sensors. Using this result,
we may also study the asymptotic performance degradation of
the optimal strategy as the number of sensors grows. Notice
that, as the number of sensors tends to infinity, the proportion
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TABLE II
TIME TO FIND A GLOBALLY OPTIMAL SOLUTION TO PROBLEM 1 FOR TEAMS

OF N SENSORS

of sensors that use policy V2
X tends to 1. Therefore, the optimal

performance of the system tends to tX , which, remarkably, is
bounded away from 1.

D. On the Numerical Search for a Globally Optimal
Solution: The General Case

Using Proposition 4, it is possible to implement a numerical
procedure to exhaustively search for a globally optimal solution
to Problem 1 over the 3N candidate solutions. On a standard
laptop computer, the optimization can be carried out within
reasonable times for up to N = 16 sensors. Table II shows the
average running time to perform this procedure. It is important to
highlight that this numerical search is performed offline and only
once prior to deployment. The implementation of the policies
V0

Xk
, V1

Xk
, and V2

Xk
by the sensors is trivial and does not require

any computations. Therefore, the implementation of an optimal
system with arbitrary pmfs and weights is practicable for N ≤
16 sensors.

E. Extension of Theorem 2 to More Than Two Sensors

Here, we seek to find U that minimizes the following cost:

JB (U) = P(W �= Ŵ )

where Ŵ = (X̂1 , . . . , X̂N ) is a N -tuple MAP estimate for (X1 ,
. . . , XN ) obtained as follows:

Ŵ = E(Y )

where

E(y) = arg max
α∈W

P
(
(X1 , . . . , XN ) = α | Y = y

)

and W
def= X1 × · · · × XN .

Theorem 6: The N -tuple Ǔ , formed by Ǔk = V1
Xk

for all k
in {1, . . . , N}, minimizes JB . �

Proof: See Appendix D.
1) Example: Consider the case of a system where N sen-

sors observe independent random variables {X1 , . . . , XN } that
are identically distributed according to pX . The total prob-
ability of error evaluated at the globally optimal solution

Fig. 5. Optimal performance of a team with N sensors observing i.i.d.
geometric random variables with parameter π and minimizing the total
probability of error criterion.

U� = (V1
X 1

, . . . ,V1
XN

) is

JB (U�) = 1 − N
(
qX (1)

)N −1(1 − qX (1) − qX (2)
)

− (qX (1) + qX (2)
)N

.

When pX is Bernoulli, it follows immediately that the optimal
cost is zero for any number of sensors. However, for |X| ≥ 3, the
performance of the system degrades when the number of sensors
N increases, and the optimal cost converges to 1 as N tends to
infinity. We illustrate how the performance degrades with N
for the case in which pX is the Geometric pmf with parameter
π ∈ [0, 1]. The optimal cost calculated for N = 2, 4, 8, 16, and
64 is depicted in Fig. 5.

VII. CONCLUSION AND FUTURE WORK

We proposed a framework in which estimates of two or more
independent discrete random variables are calculated based on
information transmitted via a collision channel. In this frame-
work, each random variable is observed by a sensor that decides
whether it stays silent or attempts to transmit its measurement to
the remote estimator. The collision channel declares a collision
when two or more sensors decide to transmit, and operates as a
perfect link, otherwise.

We formulated a team decision problem in which we sought
to determine the transmission policies that minimize two types
of cost. The first cost is a weighted sum of the probabilities of
error of the estimates of each random variable. We then consid-
ered the case where the cost is the total probability of estimation
error. In both cases, we used a person-by-person optimality ap-
proach to obtain structural characterizations of globally optimal
solutions. For the latter case, we explicitly found a globally op-
timal solution, whereas in the former, we showed that there is
a finite set of candidate solutions with a specific structure that
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contains at least one that is globally optimal. The number of
candidate solutions grows exponentially (3N ) with the number
of sensors, however, it does not depend on the distribution or
cardinality of the support of the random variables, which can
be countably infinite. The determination of which solution is
optimal among the set of candidates, as well as the determina-
tion of the minimal cost, is carried out via simple calculations
that depend only on the probabilities of the two most probable
outcomes of each random variable. When there are two sensors,
we show that the number of candidate solutions can be further
reduced from nine to five. This suggests that 3N may be, in
general, a very conservative upper bound on the number of can-
didate solutions that need to be tested. Indeed, we showed that
when the observations at the sensors are i.i.d., the complexity
is quadratic in the number of sensors; and if, additionally, the
weights are uniform, we obtained a globally optimal solution in
closed form for any number of sensors.

Open problems: There are several possible extensions of the
work reported in this paper. The first is to consider the case when
the random variables are dependent or, as addressed in [27] for
continuously distributed random variables, the measurements
contain private and common components. The case in which u
is not available in (24) when there is a collision is a realistic
and important problem that also remains unsolved. In this case,
there is ambiguity on which sensors attempted to transmit when
a collision occurs. In the case of arbitrarily distributed observa-
tions, it is also important to investigate systematic methods to
reduce the number of candidate solutions that need to be tested
when the cost is the aggregate probability of estimation error. In
this regard, for problems with N > 16 sensors, either more so-
phisticated algorithms or suboptimal approaches will need to be
developed. Finally, the sequential estimation of discrete Markov
sources over the collision channel with feedback is yet another
important unsolved problem.

APPENDIX A
COMMUNICATION COST AND OFFSET TERMS

Proof of Proposition 1: First, we need to show that, for i, j ∈
{1, 2} and j �= i, the following holds:

Ej

(
(i, xi)

)
= Ej (∅), xi ∈ Xi

which implies that for the purpose of estimating Xj , observing
Y = (i, xi) at the remote estimator is equivalent to receiving
Y = ∅.

From the definition of the MAP estimator in (4), we have

Ej (∅) = arg max
α∈Xj

P(Xj = α, Y = ∅)

= arg max
α∈Xj

P(Xj = α,Ui = 0, Uj = 0)

(a)
= arg max

α∈Xj

P(Xj = α,Uj = 0).

Similarly, we also have

Ej

(
(i, xi)

)
= arg max

α∈Xj

P
(
Xj = α, Y = (i, xi)

)

= arg max
α∈Xj

P(Xj = α,Uj = 0, Ui = 1,Xi = xi)

(b)
= arg max

α∈Xj

P(Xj = α,Uj = 0)

= Ej (∅).

The equalities (a) and (b) follow from Assumption 1 and the
fact that X1 and X2 are independent. Consequently, the MAP
estimate X̂j = Ej (Y ) leads to

P(Xj �= X̂j | Ui = 1, Uj = 0)

= P(Xj �= X̂j | Ui = 0, Uj = 0). (29)

Finally, given that (Ui = 0, Uj = 1) and
(
Y = (j,Xj )

)
are

identical events, we also have

P(Xj �= X̂j | Ui = 0, Uj = 1) = 0. (30)

Using the law of total probability, (29) and (30), we rewrite ρŨj

as follows:

ρŨj
= P(Xj �= X̂j , Uj = 1 | Ui = 1)

= P(Xj �= Ej (C), Uj = 1).

Using the definition of MAP estimator and expressing the result
in terms of the policy Ũj , we have

ρŨj
= P(Uj = 1) − max

αj ∈Xj

Ũj (αj )pXj
(αj ). (31)

Following similar steps, we can show that the offset term θŨj

is given by

θŨj
= P(Xj �= Ej (∅), Uj = 0)

which expressed in terms of Ũj is

θŨj
= P(Uj = 0) − max

x∈Xj

(
1 − Ũj (x)

)
pXj

(x). (32)

The proof is concluded by noticing that (31) and (32) imply that
0 ≤ ρŨj

≤ 1 and 0 ≤ θŨj
≤ 1. �

APPENDIX B
AUXILIARY RESULTS FOR THE PROOF OF THEOREM 2

Proof of Proposition 2: The conditional probability of a cor-
rect estimate conditioned on the event of a collision can be
computed as

P(W = Ŵ | Y = C)
(a)
= max

ω∈W
P(W = ω | Y = C)

(b)
= max

ω∈W
P(W = ω | U1 = 1, U2 = 1)

(c)
= max

α1 ∈X1

P(X1 = α1 | U1 = 1)

× max
α2 ∈X2

P(X2 = α2 | U2 = 1)

where (a) follows from our definition of Ŵ ; the equality in
(b) results from the fact that the events (Y = C) and (U1 =
1, U2 = 1) are identical; and finally, (c) follows from the fact
that (U1 ,X1) and (U2 ,X2) are independent.
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The proof of the second equality can be derived from the fact
that the events (Y = ∅) and (U1 = 0, U2 = 0) are identical,
followed by the same steps as before. �

Proof of Proposition 3: It suffices to show that for every
αi ∈ Xi , the following equalities hold:

P
(
W = Ŵ | Y = (i, αi)

)
(a)
= max

ω∈W
P
(
W = ω | Y = (i, αi)

)
(b)
= max

ω∈W
P(W = ω | Ui = 1,Xi = αi, Uj = 0)

(c)
= max

αj ∈Xj

P(Xj = αj | Uj = 0)

where (a) follows from our definition of Ŵ ; the equality in
(b) follows from the fact that

(
Y = (i, αi)

)
and (Ui = 1,Xi =

αi, Uj = 0) are identical events; and (c) follows from the fact
that (U1 ,X1) and (U2 ,X2) are independent. �

APPENDIX C
PROOF OF THEOREM 5

Lemma 5: Consider Problem 1 with an arbitrary number of
sensors N ≥ 2. Let ηk = 1/N and Xk ∼ pX , k ∈ {1, . . . , N}.
A globally optimal solution can be found by solving the follow-
ing optimization problem:

minimize
n0 ,n1 ∈Z

f
(
n0 , n1

)

subject to n0 + n1 ≤ N

n0 , n1 ≥ 0 (33)

where

f(n0 , n1) =
[
n0 ·

(
1 − qX (1)

)
+ (N − n0 − n1) · tX

+ n1 · tX ·
(
1 − (qX (1)

)n1 −1(1 − qX (2)
)N −n0 −n1

)]/
N.

Proof: Theorem 3 implies that the search for globally opti-
mal solutions can be constrained to N -tuples of policies U =
(U1 , . . . ,UN ) whereUk ∈ {V0

X ,V1
X ,V2

X }, k ∈ {1, . . . , N}. Let
n0 be the number of sensors using policy V0

X ; n1 be the number
of sensors using policy V1

X ; and n2 be the number of sensors
using policy V2

X . These quantities are such that

n0 + n1 + n2 = N.

Assuming that ηk = 1/N , Proposition 4 implies that the cost
can be written as the following function:

J̃A (n0 , n1 , n2)
def=
[
n0 ·

(
1 − qX (1)

)

+ n1 · tX
(
1 − (qX (1)

)n1 −1(1 − qX (2)
)n2
)

+ n2 · tX
]
/N.

Therefore, Problem 1 reduces to the following equivalent non-
linear integer program:

minimize
n0 ,n1 ∈Z

J̃A

(
n0 , n1 , N − n0 − n1

)

subject to n0 + n1 ≤ N

n0 , n1 ≥ 0. (34)

Define the function f : Z2 → R as

f(n0 , n1)
def= J̃A

(
n0 , n1 , N − n0 − n1

)
.

�
Lemma 6: The function f(n0 , n1) is monotone decreasing

in n0 .
Proof: To establish this fact, let n0 > 0 and n1 ≥ 0 such that

n0 + n1 ≤ N . Consider the following:

N · (f(n0 , n1) − f(n0 − 1, n1)
)

= −qX (2)
(
1 − n1tX qX (1)n1 −1(1 − qX (2)

)N −n0 −n1
)
.

Then, notice that the following strict inequality holds:

n1qX (1)n1 −1(1 − qX (2)
)N −n0 −n1 < n1qX (1)n1 −1 .

Furthermore, the following is satisfied:

n1qX (1)n1 −1 < 1 + qX (1) + · · · + qX (1)n1 −1

<

∞∑
j=0

qX (1)j =
1

1 − qX (1)

<
1

1 − qX (1) − qX (2)
=

1
tX

.

Therefore, we can conclude that f(n0 , n1)>f(n0−1, n1). �
Lemma 7: Let α ∈ (0, 1). Consider the sequence p(n) de-

fined as

p(n) def=
{

nαn−1(1 − α)2 n = 1, 2, . . .
0 otherwise.

The following holds:

arg max p(n) =
⌊

α

1 − α

⌋
+ 1.

Proof: The sequence p(n + 1) is the probability mass func-
tion of a negative binomial random variable with parameters 2
and α. This pmf has mode equal to 
α/(1 − α)�. �

Proof of Theorem 5: Lemma 5 implies that a globally opti-
mal solution to Problem 1 can be found by solving the equivalent
optimization problem in (33). From Lemma 6, the monotonic-
ity of f(n0 , n1) in n0 implies that, without loss of optimality,
n�

0 = 0.
In order to find the optimal value of n1 that minimizes

f(n0 , n1), it suffices to optimize the following function:

f(0, n1) = tX

(
1 − n1qX (1)n1 −1(1 − qX (2)

)N −n1 /N
)
(35)
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which is equivalent to solving

maximize
n1 ∈Z

n1qX (1)n1 −1(1 − qX (2)
)N −n1

subject to 0 ≤ n1 ≤ N. (36)

Notice that the objective function in (36) is directly propor-
tional to

n1

(
qX (1)

1 − qX (2)

)n1 −1 (
1 − qX (1)

1 − qX (2)

)2

.

The result follows from Lemma 7. �

APPENDIX D
PROOF OF THEOREM 6

Proof of Theorem 6: The fact that Ŵ is the MAP estimate
leads to the following equalities:

P(W = Ŵ | Y = ∅) =
N∏

k=1

max
αk ∈Xk

P(Xk = αk | Uk = 0)

P
(
W = Ŵ | Y = (j, x̃)

)
=
∏
k �=j

max
αk ∈Xk

P(Xk = αk | Uk = 0).

The fact that the estimator receives U from χ when a collision
occurs, leads to

P
(
W = Ŵ | Y = (C, μ)

)

=
N∏

k=1

max
αk ∈Xk

P(Xk = αk | Uk = μk )

for any μ in {0, 1}N . For any given policy U , we can use the
total probability law to express the cost as

JB (U) = 1 −
N∏

k=1

max
αk ∈Xk

P(Xk = αk , Uk = 0)

−
N∑

j=1

⎛
⎝∏

k �=j

max
αk ∈Xk

P(Xk = αk , Uk = 0)

⎞
⎠P(Uj = 1)

−
∑

μ∈LN , 2

(
N∏

k=1

max
αk ∈Xk

P(Xk = αk , Uk = μk )

)

where LN,k
def= {μ ∈ {0, 1}N |∑N

i=1 μi ≥ k}.
The cost can be re-expressed as

JB (U) = 1 −
N∏

k=1

max
αk ∈Xk

(
1 − Uk (αk )

)
pXk

(αk )

−
N∑

j=1

⎛
⎝∏

k �=j

max
αk ∈Xk

(
1 − Uk (αk )

)
pXk

(αk )

⎞
⎠

×
∑

αj ∈Xj

Uj (αj )pXj
(αj )

−
∑

μ∈LN , 2

⎛
⎝ ∏

k :μk =0

max
αk ∈Xk

(
1 − Uk (αk )

)
pXk

(αk )

⎞
⎠

×
⎛
⎝ ∏

k :μk =1

max
αk ∈Xk

Uk (αk )pXk
(αk )

⎞
⎠ .

For any arbitrary choice of i in {1, . . . , N}, and for any given
fixed Ũ−i , we have

JB (Ui , Ũ−i) = 1 − τ̃−i max
αi ∈Xi

Ui(αi)pXi
(αi)

− 	̃−i

∑
αi ∈Xi

Ui(αi)pXi
(αi)

− (	̃−i + β̃−i) max
αi ∈Xi

(
1 − Ui(αi)

)
pXi

(αi) (37)

where the coefficients 	̃−i , τ̃−i , and β̃−i are given by

	̃−i
def=
∏
k �=i

max
αk ∈Xk

(
1 − Ũk (αk )

)
pXk

(αk )

τ̃−i
def=

∑
μ−i ∈LN −1 , 1

⎛
⎝ ∏

k :μk =0

max
αk ∈Xk

(
1 − Ũk (αk )

)
pXk

(αk )

⎞
⎠

×
⎛
⎝ ∏

k :μk =1

max
αk ∈Xk

Ũk (αk )pXk
(αk )

⎞
⎠

β̃−i
def=

∑
μ−i ∈LN −1 , 2

⎛
⎜⎜⎝
∏
k �=i:
uk =0

max
αk ∈Xk

(
1 − Ũk (αk )

)
pXk

(αk )

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝
∏
k �=i:
μk =1

max
αk ∈Xk

Ũk (αk )pXk
(αk )

⎞
⎟⎟⎠

+
∑
j �=i

( ∏
k /∈{i,j}

max
αk ∈Xk

(
1 − Ũk (αk )

)
pXk

(αk )

)

×
∑

αj ∈Xj

Ũj (αj )pXj
(αj ).

After a few calculations, we arrive at the following:

τ̃−i − β̃−i =
∑
j �=i

( ∏
k /∈{i,j}

max
αk ∈Xk

(
1 − Ũk (αk )

)
pXk

(αk )

)

×
(

max
αj ∈Xj

Ũj (αj )pXj
(αj ) −

∑
αj ∈Xj

Ũj (αj )pXj
(αj )

)
≤ 0.

From the above-mentioned inequality, which implies that τ̃−i ≤
β̃−i , and from the fact that if Ũ−i is fixed then (37) has the same
structure as JB in (20), we can conclude from Lemma 4 that
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JB (V1
Xi

, Ũ−i) ≤ JB (Ui , Ũ−i) holds for any Ui in Ui . Since, the

choice of i and Ũ−i was arbitrary, we conclude that Ǔ , formed
by Ǔi = V1

Xi
for all i in {1, . . . , N}, is globally optimal. �
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