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Optimal Estimation Over the Collision Channel
Marcos M. Vasconcelos and Nuno C. Martins

Abstract—Consider a distributed sensing system that
comprises two sensors, each observing a random variable,
and a remote estimator. The goal of the remote estimator
is to produce estimates of the random variables based on
information transmitted to it by the sensors. The random
variables are independent and information is transferred
from the sensors to the estimator via a collision chan-
nel, which can only convey a single packet. Each sensor
has the authority to decide what and when to transmit,
and simultaneous transmissions result in a collision event
to be detected at the estimator. In our formulation, there is
no communication between the sensors, which precludes
the use of coordinated strategies. Our results characterize
the structure of policies at the sensors and the remote esti-
mator that are optimal with respect to a mean squared error
criterion. More specifically, we show that there exist optimal
policies at the sensors that use deterministic threshold
strategies to decide when to transmit. This structural result
is independent of the distributions of the observed random
variables. In our analysis, we prove that the computation of
a person-by-person optimal threshold policy can be recast
as a one-bit optimal quantization problem for which the
cost is nonuniform across representation symbols. Based
on that observation, we provide an iterative procedure akin
to the Lloyd–Max algorithm that can be used to compute
locally optimal solutions. In the Gaussian case, our iterative
method converged to an optimal solution in all numerical
examples we have tried. We provide several examples that
show the optimality of asymmetric threshold policies even
when the overall framework is symmetric, such as when
both random variables are Gaussian with zero mean and
the same variance.

Index Terms—Decision theory, estimation, multi-agent
systems, networked control systems, optimization,
quantization.

I. INTRODUCTION

CYBER-PHYSICAL systems are often formed by multi-
ple noncollocated components that sense, exchange in-

formation, and act as a team through a network [1]. In the
wireless case, the network may support only a finite number
of simultaneous transmissions due to limitations such as in-
terference. Here, we are interested in characterizing optimal
policies and the performance degradation that occurs when the
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Fig. 1. Schematic representation of distributed estimation over a
collision channel.

maximal number of simultaneous transmissions is strictly less
than the number of components sharing the same network.
In order to obtain design principles that can be characterized
analytically, we consider a simple configuration formed by a
remote estimator that operates on information received from
two sensors that measure a random variable each (see Fig. 1).
Each sensor has the authority to decide whether to attempt a
transmission or to remain silent based solely on the random
variable it measures. In our formulation, we assume that in-
formation is conveyed through a collision channel for which
at most one transmission can reliably reach the estimator and
multiple transmissions result in a collision. We consider the
design of policies that minimize a mean squared estimation
error, subject to the communication constraint imposed by the
collision channel. In particular, we will prove the optimality of
policies with a particular threshold (event-based) structure and
explore iterative methods to obtain person-by-person optimal
solutions.

A. Applications

The framework proposed here can be used to model a dis-
tributed sensor network in which measurements that are made
by noncollocated sensors are wirelessly transmitted to a fusion
center. One-shot problem formulations arise when the objective
is to detect a one-time event of interest or estimating vital
variables in real time, and with minimal delay. This is the case
when multiple sensors monitor large structures or systems such
as bridges, electric power grids and, oil and gas pipelines, which
are subject to potentially catastrophic events. In such scenarios,
the delay and additional infrastructure required for coordinating
access to the network over large distances would be costly and
impede swift detection and estimation. Here we adopt a one-
shot formulation in which each sensor does not have time to
coordinate or communicate with the other, and must decide
whether to communicate based solely on its measurement.
The observations are independent, but otherwise allowed to be
arbitrarily distributed, possibly coming from different families
of distributions.
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B. Related Literature

Control and estimation over communication networks have
been of great interest to control theorists and engineers during
the last decade [2]. With the advent of cyber-physical systems
as a new paradigm for system design, the development of new
tools and models in networked control and estimation are as
important now as ever. The components or blocks of a cyber-
physical system are noncollocated and typically interconnected
by a network. Moreover, these blocks have access to different
information, which is often corrupted by noise, delayed or
incomplete due to physical or operational constraints. Such
problems can be cast in the framework of team decision theory
and their analysis often combine tools from control, informa-
tion and optimization theories [3].

Many channel and network models have been studied in
the existing networked control and estimation literature. Apart
from the traditional additive Gaussian noise (AWGN) and fad-
ing channels, the packet drop channel (also known as analog
erasure channel) has attracted most of the attention of the
research community in control. Most notably, the works of
Sinopoli et al. [4] and Gupta et al. [5], [6] have become
landmark references in the area. However, there have been only
few studies that explicitly deal with the effects of interference
in control and estimation over wireless networks [7]–[11]. Our
work seeks to contribute in this growing field by modeling
interference using a simple model for a communication medium
shared by multiple devices known as the collision channel [12],
which has been largely used, along with queueing theory, in the
design and analysis of wireless networks [13].

We assume that the collision channel can only carry one
packet and differs from the packet drop channel in the following
fundamental aspect: the channel output alphabet has two dis-
tinct symbols to represent no-transmission (idle channel) and
collision (simultaneous transmissions) events. Therefore, the
receiver is always able to detect if the transmitters attempted
to communicate or not, even though the colliding packets
cannot be correctly decoded. We present a precise mathematical
definition for the collision channel that makes the distinction
between collision and no-transmission events. Then, we exploit
these two symbols to embed an extra bit of information in
the communication between sensors and remote estimator. We
specifically treat the search for an optimal communication
policy as a one-bit quantizer design problem with a new asym-
metric quadratic distortion metric.

Our collision channel model can be modified to incorporate
features of more sophisticated systems that allow, for instance,
asynchronous access [14] and multipacket reception capabili-
ties [15], [16]. There are also variants that assume sequential
transmissions with and without feedback [17]. One of the possi-
ble extensions of the present framework is the collision channel
with capture, where the sensors may also adjust the power used
to transmit a packet, and in the event of a collision, the packet
transmitted with the largest power survives the collision and the
others are lost [18].

Since the communication between the components in a
cyber-physical system is usually performed over a network of
limited capacity (or limited infrastructure), it is important to
understand how these limitations may degrade the performance
of the overall system. More importantly, the system’s designer
must provide strategies that make the best use of the limited

available communication resources. There are three main lines
of research that consider the effects of communication links
between sensors and estimators. The first class of problems
corresponds to the characterization of fundamental limitations
on performance caused by noisy communication channels [19].
Here we find the more traditional communication models such
as the AWGN and fading channels [20]–[22]; as well as the
packet drop channel of [4]–[6]. The second class of problems
studies the effect of noiseless but rate limited channels in
estimation and control, in which signals are quantized prior
to transmission. Results known as data-rate theorems [23]
establish the minimum quantization rate necessary to stabilize
an unstable plant, while other works establish conditions for the
existence of stable quantizer-estimator schemes [24].

Finally, a third class of problems studies the tradeoff between
communication rate and estimation performance over noisy or
noiseless but costly communication channels. An interesting
common feature of these problems is that threshold policies
emerge as solutions to optimization problems and are not an
architecture imposed by the system’s designer. The first con-
tributions in this field were done by Imer and Basar in [25],
where a limit on the number of noiseless transmissions that
can be made by the sensor over a finite horizon imposes an
upper bound on the communication rate. The idea that event-
based estimation/control systems can be used for signalling was
first mentioned by [25], whose results were later complemented
by [26]. A continuous time formulation of this problem was
studied by Rabi et al. in [27]. Xu and Hespanha in [28] solved an
infinite horizon problem whose objective functional combined
the expected estimation error and a communication cost. Lipsa
and Martins in [29] also considered a finite horizon problem
with an objective functional that combines estimation error and
communication costs and established the structure of jointly
optimal communication and estimation policies. In particular,
[29] shows that there exist optimal communication policies of
the symmetric threshold type and the optimal estimator admits a
simple recursive structure. In [30], the authors showed that this
structure is preserved when the channel randomly drops pack-
ets. Nayyar et al. in [31] generalized [25] and [29] obtaining
structural results for when, in addition to communication costs,
there is a stochastically varying energy budget, which reflects
the sensor’s ability to harvest energy from the environment in
order to communicate. In the context of control of dynamical
systems over communication networks, the work of Molin and
Hirche in [32] shows that certainty equivalence controllers are
optimal for point-to-point communication links are of the type
in [25] and [29]. A model similar to the one presented here was
used Gupta et al. in a game between a sensor and a jammer in a
remote estimation problem [33].

C. Comparison With Prior Work by the Authors

This paper is an extended version of [34], which first intro-
duced the problem and established early versions of some of
the structural results detailed here. The analysis in [34] assumed
independent Gaussian measurements, whereas in this paper, we
prove a more general version in which X1 and X2 are any
independent continuous random variables with finite second
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moment, possibly with different distributions. We answer sev-
eral questions that were left open in [34], such as the existence
of team-optimal solutions and we provide a rigorous proof
that the duality gap is zero in one of our key lemmas. Here,
we formally derive the Modified Lloyd–Max algorithm and
provide a novel nonlinear dynamical system interpretation, for
which several properties can be established. Many examples are
provided, including pairs of person-by-person optimal solutions
for the Gaussian case. Such person-by-person optimal solutions
were not available at the time when [34] was written.

D. Paper Organization

This paper is structured in seven sections, including the
introduction. The problem formulation and our main result are
stated in Section II. The optimality of threshold policies for the
system in Fig. 1 is established in Section III, where we use a
person-by-person optimality approach to establish an analogy
with a framework of remote estimation with communication
costs. In Section IV, we show that the computation of person-
by-person optimal threshold policies is equivalent to the de-
sign of a one-bit quantizer that minimizes a distortion metric
that is nonuniform across quantization regions. We argue that
asymmetric thresholds are optimal when it is advantageous to
encode information using collisions and no-transmissions. The
numerical examples discussed in Section V illustrate that the
policy design is a nonconvex problem in general, and optimal
solutions can be symmetric or asymmetric, depending on the
parameters that specify the problem. A numerical approach
to compute locally optimal threshold policies is proposed in
Section VI based on a modified version of the Lloyd–Max
algorithm. We present examples for the case when the variables
are Gaussian that illustrate that the algorithm converges to a
local minimum1 and that it can be used to compute person-by-
person optimal solutions. The paper ends with our conclusions
in Section VII.

E. Notation

We use the terminology sensor and decision maker (DM)
interchangeably throughout the paper. We adopt the following
notation: random variables and random vectors are represented
using upper case letters, such as X . Realizations of random
variables and random vectors are represented by the corre-
sponding lower case letter, such as x. The probability density
function of a continuous random variable X , provided that it
is well defined, is denoted by fX . Functions and functionals
are denoted using calligraphic letters such as F or F. We
use B(p) and N (m,σ2) to represent the Bernoulli probability
mass function of parameter p and the Gaussian probability
distribution of mean m and variance σ2, respectively. The real
line is denoted by R. Sets are represented in blackboard bold
font, such as A. The complement of a subset A in R is denoted

by Ac def
= R \ A. The empty set is denoted by ∅. The extended

1Although we were not able to prove global convergence to an optimum,
the algorithm has converged to an optimum in all numerical examples we have
tried.

real line is defined as R̄
def
= R ∪ {−∞,+∞}. The probability

of an event E is denoted by P(E); the expectation and variance
of a random variable Z are denoted by E[Z] and V(Z), respec-
tively. The positive and negative parts of a real-valued function

G are defined as [G(x)]+ def
= max{0,G(x)} and [G(x)]− def

=
max{0,−G(x)}. We denote by Lp

μ(R) the space of all μ-
measurable functions G : R → R such that

∫
R
|G(x)|pdμ(x) <

+∞, 1 ≤ p < ∞.

II. PROBLEM FORMULATION AND MAIN RESULT

We adopt the basic framework depicted in Fig. 1, which
comprises two decision makers labelledU1 and U2 and a remote
estimator labelled E connected by a collision channel χ. There
are two independent, continuous random variables X1 and X2

with distributions μ1 and μ2, which are accessible to U1 and U2,
respectively. We assume that E[Xi] = 0 and V(Xi) < +∞,
i ∈ {1, 2}. Each decision maker has the authority to decide
whether to attempt a transmission of its measurement to the
estimator. It is also important to notice from Fig. 1 that there
is no communication between U1 and U2, which precludes
policies that involve coordination.

The collision channel defined below conveys information
from the sensors to the estimators.

Definition 1 (Collision Channel): The channel input alpha-

bet is S
def
= R ∪ {∅}, and the channel output alphabet is Y

def
=

({1, 2} × R) ∪ {∅,C}, where C represents the occurrence of a
collision. The symbol ∅ indicates absence of transmission. The
collision channel is a deterministic two-input map χ : S× S →
Y defined as follows:

χ(s1, s2)
def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1, s1) if s1 �= ∅, s2 = ∅

(2, s2) if s1 = ∅, s2 �= ∅

C if s1 �= ∅, s2 �= ∅

∅ if s1 = ∅, s2 = ∅.

(1)

The channel inputs are denoted by S1 and S2, while Y desig-

nates the output that is defined as Y
def
= χ(S1, S2).

Assumption 1: We assume that a transmission is successful
if it conveys its real-valued measurement to the estimator. This
is a realistic premise when the transmitted message has enough
bits to represent a real number with negligible quantization
error. According to (1), we also consider that each packet
contains in its header the identification number of the sender.
This allows the remote estimator to unambiguously determine
the origin of a successful transmission.

The following are precise definitions of the communication
policies at the decision makers.

Definition 2 (Communication Policies): A communication
policy for the ith sensor is determined by a mapUi : R → [0, 1].
The actions U1 and U2 are binary random variables that satisfy
the following probabilistic law:

P(Ui = 1|Xi = xi, Xj = xj)
def
= Ui(xi), i �= j

where i, j ∈ {1, 2}, for which Ui = 1 means that the ith sensor
will attempt transmission; and Ui = 0 means that it will remain
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silent. We adopt independent randomization mechanisms to
generate U1 and U2, which guarantee that (X1, U1) is inde-
pendent of (X2, U2). Each Ui acts on the ith channel input
according to the following definition:

Si
def
=

{
Xi if Ui = 1

∅ if Ui = 0
, i ∈ {1, 2}. (2)

The combined action of (2) and the channel in (1) leads to the
following rule to determine the output of the channel:

Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1, X1) if U1 = 1, U2 = 0

(2, X2) if U1 = 0, U2 = 1

C if U1 = 1, U2 = 1

∅ if U1 = 0, U2 = 0.

We can now precisely state the problem of optimal remote
estimation over the collision channel.

Problem 1: Let X1 and X2 be two independent continuous
random variables with zero mean and finite variance. Consider
the following cost:

J (U1,U2)
def
= E

[
(X1 − X̂1)

2 + (X2 − X̂2)
2
]

(3)

where each X̂i is defined below2

X̂i
def
= Ei(Y ), and Ei(y)

def
= E[Xi|Y = y], y ∈ Y. (4)

Solve the following optimization problem:

minimize
U1∈U1,U2∈U2

J (U1,U2)

where the minimization is carried over choices in Ui, which
represents the set of randomized policies defined as follows:

Ui
def
=

{
U ∈ L2

μi
(R)|U : R → [0, 1]

}
.

Remark 1: If X1 and X2 are nonconstant then the two terms
in (3) cannot be both zero because the collision channel can
convey at most one sensor transmission to the estimator. This
implies that there is a tradeoff in (3) that causes the minimal
cost to be always positive.

A. Person-by-Person Optimality

Problem 1 can be categorized as a team decision problem
with continuous observations and action spaces, where decision
makers DM1 and DM2 have access to local information and
must choose their actions to jointly minimize a common cost
[3]. Moreover, the information pattern is nonclassical, which in
general leads to intractable nonconvex optimization problems
[35]. Related problems with discrete observation and action sets
are known to be NP-hard [36]. However, it may be possible
to establish structural properties of jointly optimal policies
(also known as team-optimal) by using the so-called person-by-
person optimality approach, which is rooted on the following
concept:

2Notice that the estimator in (4) is always optimal for the cost in (3).

Definition 3 (Person-by-Person Optimal Solutions): A
pair of policies (U�

1 ,U�
2 ) is person-by-person optimal if

J (U�
1 ,U�

2 ) ≤J (U1,U�
2 ) , U1 ∈ U1

J (U�
1 ,U�

2 ) ≤J (U�
1 ,U2) , U2 ∈ U2.

Using the fact that if the pair (U∗
1 ,U∗

2) is jointly optimal for
Problem 1 then it is also person-by-person optimal [3], if a par-
ticular structure holds for every person-by-person optimal pol-
icy, it must also hold for team-optimal policies. The advantage
of using this approach is to decompose a complicated problem
into simpler subproblems for which a systematic analysis is
possible.

B. Optimality of Threshold Policies for Problem 1

The goal of this subsection is to state our main result as
Theorem 1, which guarantees the optimality of determinis-
tic threshold policies as defined below. This is an important
structural result because it shows that the infinite dimensional
minimization stated in Problem 1 can be recast as a finite-
dimensional search with respect to threshold limits. We will
defer the proof of Theorem 1 until the end of Section III, in
which we develop all the required auxiliary results.

Definition 4 (Determinisic Threshold Policy): A policy U
is of the deterministic threshold type if there are constants a and
b in R̄ for which the following holds:

U(x) =
{
0 if a ≤ x ≤ b

1 otherwise
, x ∈ R.

If a = −b then the threshold policy is called symmetric, other-
wise it is called asymmetric.

Theorem 1: There is a pair of deterministic threshold
policies (Ŭ∗

1 , Ŭ∗
2) that is optimal for Problem 1.

Remark 2: Although we were unable to do so, we believe
that the existence of an optimum could have been established
using the results in [37]. Regardless of whether this interesting
connection to [37] is possible or not, Theorem 1 is an indispens-
able result because it shows the existence of an optimal solution
with a specific deterministic threshold structure.

III. ANALOGY WITH A PROBLEM OF REMOTE

ESTIMATION WITH COMMUNICATION COSTS

Here, we establish an analogy between the minimization of
the cost in (3) with respect to either U1 or U2 while keeping
the other fixed, and a problem of optimal remote estimation
systems with communication costs. The intuition behind this
correspondence is that if U{j:j �=i} is fixed then the increase in
the mean squared estimation error of Xj that results from the
collisions caused by Ui can be viewed, from the perspective of
Ui, as a communication cost. This analogy will be useful in the
proof of our main result (Theorem 1) and, as we explain later,
it also leads to a new class of problems of independent interest.

In order to make this analogy precise, without loss of gener-
ality, consider that U∗

j is fixed to an arbitrary choice in Uj , and
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let JU∗
j
(Ui) denote the resulting cost defined as follows:

JU∗
j
(Ui)

def
= J (U1,U2)

∣∣∣
Uj=U∗

j

, i �= j. (5)

The following proposition unveils the underlying additive com-
munication cost embedded in (5).

Proposition 1 ([34]): Given a preselected U∗
j , and i �= j, the

following holds:

JU∗
j
(Ui) = E

[
(Xi − X̂i)

2
]
+ ρU∗

j
P(Ui = 1) + θU∗

j
(6)

where ρU∗
i

and θU∗
j

do not depend on Ui and are given by

ρU∗
j
=E

[
(Xj − X̂j)

2|Ui = 1
]
−E

[
(Xj − X̂j)

2|Ui = 0
]

θU∗
j
=E

[
(Xj − X̂j)

2|Ui = 0
]
.

The cost functional in (6) has three components: the first is
the mean square estimation error of Xi, the second ascribes a
cost ρU∗

j
to the probability of attempting a transmission, and the

third is constant with respect to Ui.
The following proposition will be important later on.
Proposition 2 ([34]): For a given a preselected U∗

j , it holds
that ρU∗

j
≥ 0.

From Propositions 1 and 2, we conclude that the minimiza-
tion of J with respect to Ui, while keeping U∗

j fixed, can be cast
as follows:

Problem 2: Consider that β in [0, 1] and a nonnegative
constant � are given. Let D and X be two independent random
variables. The variable D is Bernoulli with P(D = 1) = β and
X is a continuous random variable with distribution μ, zero-

mean and finite variance σ2
X . Let U

def
= {U ∈ L2

μ(R)|U : R →
[0, 1]}. Find a solution to the following:

minimize
U∈U

J(U) (7)

where the cost is defined for any U in U as follows:

J(U)
def
= E

[
(X − X̂)2

]
+ �P(U = 1).

Here, U ∈ {0, 1}, P(U = 1|X = x)
def
= U(x), the pair (X,U)

is independent of D and X̂
def
= E[X |Z], where Z is the output

of the point-to-point collision channel defined as follows:

Z
def
=

⎧⎪⎨
⎪⎩
X if U = 1, D = 0

C if U = 1, D = 1

∅ if U = 0.

(8)

Remark 3: From Propositions 1 and 2, we conclude that
the minimization of (3) with respect to Ui, while keeping
a preselected U∗

j fixed, is equivalent to Problem 2 provided
that we recognize a correspondence between (X,U,D) and
(Xi, Ui, Uj). To complete this analogy, we can select β as
P(Uj = 1) and � as ρU∗

j
.

A. Optimality of Deterministic Threshold Policies
for Problem 2

Notice that the channel specified in (8), which is adopted
in the formulation of Problem 2, is fundamentally different
from the erasure model of [4]. Unlike the latter where erasures
occur independently of the channel input, information loss in
(8) results from collision events that depend on both U and the
exogenous variable D. Our goal in what follows is to prove
Theorem 2, which establishes that there is at least one deter-
ministic threshold policy that is optimal. This is an important
result for the solution of Problem 2 because it shows that
the infinite dimensional optimization in (7) can be recast as a
finite-dimensional minimization with respect to the thresholds.
Equally important is Lemma 2, which is central for the proof of
Theorem 1.

We start by stating the following proposition that can be
derived from standard continuity arguments:

Proposition 3: Consider a policy U′ ∈ U for Problem 2.
Given a positive real constant ε, there is a policy U ∈ U

satisfying the following two inequalities:

|J(U)− J(U′)| < ε (9a)

0 < U(x) < 1, μ− a.e. (9b)

The following lemma will be used on the proof of Lemma 2
and it states the solution of a moment minimization problem
akin to what can be found in [38].

Lemma 1: Consider that a random variable X with distri-
bution μ, constants γ ∈ R and α ∈ (0, 1) are given, and the
optimization problem

minimize
G∈L2

μ(R)
E
[
X2G(X)

]
(10a)

subject to E [XG(X)] = γ (10b)

E [G(X)] = 1 (10c)

0 ≤ G(x) ≤ 1

1− α
, μ− a.e. (10d)

If the problem in (10) has a feasible solution G for which
(10d) is satisfied with strict inequalities then there is an optimal
solution Ğ with the following threshold structure:

Ğ(x) =

{
1

1−α if ă ≤ x ≤ b̆

0 otherwise
(11)

for some real constants ă and b̆.
Proof: The proof uses a technique from [39,

Section 5.7.3] adapted to infinite dimensional linear program-
ming. We start by defining a new objective function C :
L2
μ(R) → R+ ∪ {+∞} that incorporates the inequality cons-

traints by making them implicit

C(G) =

{
E
[
X2G(X)

]
if 0 ≤ G(x) ≤ 1

1−α , μ− a.e.

+∞ otherwise.



326 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 1, JANUARY 2017

This leads to the following equivalent optimization problem:

inf
G∈L2

μ(R)
C(G)

subject to E [XG(X)] = γ

E [G(X)] = 1. (12)

Letting ν ∈ R2 denote the vector of dual variables ν = (ν0, ν1),
the Lagrange dual function for this problem is

C∗(ν)=−ν1−ν0γ+ inf
0≤G(x)≤ 1

1−α

E
[
(X2 + ν0X + ν1)G(X)

]
(14)

where the bounds on G hold μ-a.e. The following function
minimizes the last term in the right hand side of (13):

Gν(x) =

{
1

1−α if x2 + ν0x+ ν1 ≤ 0

0 otherwise
(14)

which when substituted in (13) leads to the following expres-
sion for C∗(ν):

C∗(ν) = −ν1 − ν0γ − 1

1− α
E
[
[X2 + ν0X + ν1]

−
]
.

In Appendix B it is shown in detail that, provided there exists
a feasible solution G for which (10d) is satisfied with strict
inequalities, then strong duality holds and there exists a vector
ν∗ ∈ R2 that maximizes C∗(ν). Hence, an optimal solution G∗

for the problem in (12) is obtained by substituting such a ν∗ in
(14), or equivalently, by setting the equality G∗ = Gν∗ . From
Appendix C, any such ν∗ leads to a polynomial x2 + ν∗0x+ ν∗1
that always admits real roots, which we denote as a∗ and b∗,
with a∗ ≤ b∗. Since x2 + ν∗0x+ ν∗1 is a convex parabola in x,
we can further conclude that the test x2 + ν0x+ ν1 ≤ 0 can
be replaced with a∗ ≤ x ≤ b∗. Using these facts in conjunction
with (14), we conclude that there is an optimal solution of the
form in (11). �

Lemma 2: Assume that U′ ∈ U is a given policy for
Problem 2. For every positive real constant ε, there is a deter-
ministic threshold policy Ŭ for which J(Ŭ) < J(U′) + ε.

Proof: Our overarching strategy is to view the problem
in (10) as a version of Problem 2 with additional constraints so
that we can use Lemma 1 to obtain the desired result.

From Proposition 3, we know that from the given U′, we can
construct U′′ so that the following holds:

J(U′′) < J(U′) + ε (15a)

0 < U′′(x) < 1, μ− a.e. (15b)

We now proceed by defining γ and α as follows:

γ
def
= E[X |U ′′ = 0] (16a)

α
def
= P(U ′′ = 1) = E [U′′(X)] (16b)

where the action U ′′ is generated from the policy U′′ as
described in Problem 2. The cases when α = 0 or α = 1 im-
mediately correspond to optimal threshold policies Ŭ(x) = 0,

μ-a.e. and Ŭ(x) = 1, μ-a.e., respectively. So, without loss of
generality, we consider that α is in (0, 1).

Fact 1: Given γ and α defined in (16), we conclude that G′′

defined as follows:

G′′(x)
def
=

1− U′′(x)

1− α
, x ∈ R

satisfies the constraints of (10), and from (15b) it also satis-
fies (10d) strictly. Hence, we conclude that the conditions for
Lemma 1 are satisfied for the γ and α defined in (16). Denote
with Uα,γ the subset of policies U ∈ U for which the following
holds:

E[X |U = 0] = γ; E [U(X)] = α (17)

where U is the action generated from U as described in
Problem 2. For any U in Uα,γ , J(U) can be written as

J(U) = E
[
β(X − x̂C)

2 + �|U = 1
]
α

+ E
[
(X − x̂∅)

2|U = 0
]
(1− α)

for which x̂C and x̂∅ are defined as

x̂C
def
= E[X |Z = C]; x̂∅

def
= E[X |Z = ∅]

where Z is the channel output as described in Problem 2. Since
E[X |U = 1] = x̂C, we can rewrite the cost as

J(U) = (1− β)E[X2|U = 0](1− α)

−
[
(1− α)2

α
β + (1− α)

]
γ2 + �α+ βσ2

X (18)

where U ∈ Uα,γ and we used the facts that x̂CP(U = 1) =
−x̂∅P(U = 0) and x̂∅ = E[X |U = 0] = γ.

Fact 2: Notice that for U in Uα,γ , E[X2|U = 0] and
E[X |U = 0] can be written as E[X2G(X)] and E[XG(X)],
respectively, where G is found from Bayes’ law to be

G(x) =
1− U(x)

1− α
, x ∈ R. (19)

Fact 3: From Fact 2, (19) and Section III-A, we conclude
that minimizing J(U) with respect to U constrained to (17) is
equivalent to solving the problem in (10).

From Fact 1 we know that the conditions for the validity of
Lemma 1 are satisfied. Hence, from Lemma 1, Fact 3 and (19)
we conclude that there is a deterministic threshold policy Ŭ that
minimizes J(U) subject to the constraints in (17). Such policy
can be computed from the solution in Lemma 1 as follows:

Ŭ(x) = 1 + (α − 1)Ğ(x), x ∈ R.

Since Ŭ satisfies (17), by optimality we conclude that J(Ŭ) ≤
J(U′′) holds, which in conjunction with (15a) concludes the
proof. �

Theorem 2: There is a deterministic threshold policy Ŭ
∗

that
is optimal for Problem 2.
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Proof: Consider that the parameters that specify an in-
stance of Problem 2 are given and denote the minimum or
infimum in (7) as ς∗. Let U(n) be a sequence of policies such
that limn→∞ J(U(n)) = ς∗. From Lemma 2, we can define a

sequence of threshold policies Ŭ(n), such that

J
(
Ŭ(n)

)
≤ J

(
U(n)

)
+

1

n+ 1
. (20)

Let ă(n) and b̆(n) be the thresholds associated with Ŭ(n)(x).
We now proceed to study the convergence to an optimum based
on the sequence {(ă(n), b̆(n))}

∞
n=0

. We start by remarking that

the sequence {(ă(n), b̆(n))}
∞
n=0

has at least one subsequence

{(ă(mn), b̆(mn))}
∞
n=0

for which ă∗
def
= limn→∞ ă(mn) and b̆∗

def
=

limn→∞ b̆(mn) are well defined and take values in R̄, with

ă∗ ≤ b̆∗. The proof follows by using (20) and Proposition 7
(Appendix A) to conclude that the thresholds ă∗ and b̆∗ define
an optimal policy for Problem 2, which we denote as Ŭ

∗
. �

B. Proof of Theorem 1

Our proof is organized in two main steps that hinge on
the analogy developed in the first part of this section, which
presents results of independent interest for an optimal point-to-
point remote estimation paradigm that includes communication
costs.

Proof of Theorem 1: For any parameter selection
that specify an instance of Problem 1, let ς∗ be the infi-
mum or minimum cost and select a sequence of policies
{(U1,(n),U2,(n))}∞n=0

for which the following holds:

lim
n→∞

J
(
U1,(n),U2,(n)

)
= ς∗. (21)

Step 1: From Remark 3 and Lemma 2, we conclude that
there is a sequence of deterministic threshold poli-
cies {(Ŭ1,(n), Ŭ2,(n))}

∞
n=0

for which the following
holds:

J
(
Ŭ1,(n),U2,(n)

)
≤J

(
U1,(n),U2,(n)

)
+

1

n+1
,

n≥ 0 (22a)

J
(
U1,(n), Ŭ2,(n)

)
≤J

(
U1,(n),U2,(n)

)
+

1

n+1
,

n≥ 0. (22b)

Step 2: We can repeat the method used in Step 1 to conclude
that there is a sequence of deterministic threshold

policies {( ˘̆U1,(n),
˘̆U2,(n))}

∞

n=0
for which the follow-

ing holds:

J
(
Ŭ1,(n),

˘̆U2,(n)

)
≤J

(
Ŭ1,(n),U2,(n)

)
+

1

n+ 1
,

n ≥ 0 (23a)

J
(
˘̆U1,(n), Ŭ2,(n)

)
≤J

(
U1,(n), Ŭ2,(n)

)
+

1

n+ 1
,

n ≥ 0. (23b)

Our conclusion from (21) to (23) is that the sequences

{( ˘̆U1,(n), Ŭ2,(n))}
∞

n=0
and {(Ŭ1,(n),

˘̆U2,(n))}
∞

n=0
satisfy the

following:

lim
n→∞

J
(
˘̆U1,(n), Ŭ2,(n)

)
= ς∗ (24a)

lim
n→∞

J
(
Ŭ1,(n),

˘̆U2,(n)

)
= ς∗. (24b)

Without loss of generality, we proceed to analyze the con-

vergence of {( ˘̆U1,(n), Ŭ2,(n))}
∞

n=0
to an optimal solution. An

equivalent argument could have been developed using {(Ŭ1,(n),
˘̆U2,(n))}∞n=0. Let ˘̆a∗1, ˘̆b∗1, ă∗2 and b̆∗2 be constants in R̄ for which

there is a subsequence {( ˘̆U1,(mn), Ŭ2,(mn))}
∞

n=0
whose associa-

ted thresholds satisfy limn→∞ ˘̆a1,(mn)=
˘̆a∗1, limn→∞

˘̆
b1,(mn)=

˘̆
b∗1, limn→∞ ă2,(mn) = ă∗2 and limn→∞ b̆2,(mn) = b̆∗2. The proof
is concluded by invoking Proposition 6 (Appendix A) to show

that the thresholds ˘̆a∗1, ˘̆b∗1, ă∗2 and b̆∗2 define an optimal policy,
which we denote as (Ŭ∗

1 , Ŭ∗
2). �

Remark 4: Note that the proofs of the structural results of
Theorems 1 and 2 are completely independent of the distribu-
tions of X1 and X2, as long as they are zero mean independent
continuous random variables with finite variances. In fact,
X1 and X2 may come from completely different families of
distributions. The structural result of Theorem 1 is also true
for a sensing system with any number of sensors measuring
mutually independent random variables, under the additional
assumption that the remote estimator can decode the indices of
the sensors involved in a collision.

IV. POLICY DESIGN VIA QUANTIZATION THEORY

On the second part of the paper we turn our focus to the
design of optimal policies for Problem 2, which will ultimately
lead to person-by-person optimal policies for Problem 1. We
base our arguments on the observation that Problem 2 can be
understood as an one-bit quantization problem with a nonuni-
form distortion metric across the two quantization regions. The
intuition behind this interpretation comes from the fact that
the sensor’s decision of transmitting or not can be exploited
for communication by encoding in the two possible actions
an additional bit of information. When the transmission is
successful, this additional bit is redundant because the received
packet already contains all the relevant information for a perfect
estimate. However, when the transmission fails due to the
occurrence of a collision, the estimator estimates X from this
additional bit. The objective of the system’s designer is to
“compress” in this bit (represented by ∅ and C) the maximum
amount of information about X as possible.

Remark 5: This situation does not occur if instead of col-
lisions we had random erasures. The observation of an erasure
does not reveal the sensor’s intent to communicate since they
cannot be distinguished from “erasures” due to the absence of
transmitted packets when the channel is idle.
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A. One-Bit Quantization

The structural result of Theorem 2 established the existence
of an optimal deterministic threshold policy for Problem 2.
Here we will make the analogy with one-bit quantization more
precise. First, we will let U act as a deterministic encoder,
which partitions the real line R into two measurable sets A0

and A1 = Ac
0 such that A0

def
= U−1(0) and A1

def
= U−1(1). We

relax Problem 2 by letting the estimator E lie in a class of
admissible deterministic decoders, where

E(z) = z, if z �∈ {∅,C}.
Let x̂∅, x̂C ∈ R, define

E(∅)
def
= x̂∅ and E(C)

def
= x̂C.

With the cost in Problem 2 now depending on U and E, and
assuming that the random variable X has zero mean, finite
variance σ2

X , and admits a probability density function fX(x),
we can rewrite the functional as

J̃(U, E) =

∫
A0

(x− x̂∅)
2fX(x)dx

+

∫
Ac

0

[
β(x− x̂C)

2 + �
]
fX(x)dx.

Our goal is to choose a partition of R into a measurable set
A0 and its complement Ac

0 and their respective representation
points x̂∅ and x̂C such as to minimize the average distortion
quantified by J̃(U, E).

Applying the structural result obtained in the previous sec-
tion the optimal partition is such that A0 = [a, b], where a ≤ b
and a, b ∈ R̄. When they exist, the optimal thresholds and rep-
resentation symbols can be found by solving the optimization
problem in

minimize
x̂∅,x̂C,a,b∈R

∫
[a,b]

(x− x̂∅)
2fX(x)dx

+

∫
[a,b]c

[
β(x− x̂C)

2 + �
]
fX(x)dx

subject to a ≤ b (25)

with variables in a, b, x̂∅, x̂C ∈ R. In other words, the commu-
nication and estimation policies that jointly minimize the cost
J̃(U, E) can be found by solving an optimal scalar quantization
problem of a random variable X ∼ fX(x), where represen-
tation symbols are penalized by distinct quadratic distortion
functions.

Remark 6: Relaxing the estimator to lie in a larger class of
admissible estimators, rather than fixing it as the conditional
expectation operator, will be important in order to obtain a
numerical procedure for finding solutions for Problem 2.

B. The Nearest Neighbor Condition and an
Equivalent Problem

Let x̂
def
= (x̂∅, x̂C) ∈ R2. For any given x̂, the set A∗

0 which
yields the minimal cost must satisfy

x ∈ A∗
0 ⇔ (x− x̂∅)

2 ≤ β(x− x̂C)
2 + �.

This is true regardless of the probability density func-
tion fX(x). Since � ≥ 0, for 0 ≤ β < 1, the second degree
polynomial

Px̂(x)
def
= (x− x̂∅)

2 − β(x− x̂C)
2 − �

admits two distinct real roots.3 We will denote the minimum of
these roots by a(x̂) and the largest by b(x̂). Therefore, without
loss of optimality, we may assume that the no-transmission
interval is, for a given x̂

A0 = [a(x̂), b(x̂)]

and the cost is reduced to a function Jq : R2 → R defined as

Jq(x̂)
def
=

∫
[a(x̂),b(x̂)]

(x− x̂∅)
2fX(x)dx

+

∫
[a(x̂),b(x̂)]c

[
β(x − x̂C)

2 + �
]
fX(x)dx (26)

where the two maps a : R2 → R and b : R2 → R are given by

a(x̂)
def
=

1

1− β

[
(x̂∅ − βx̂C)−

√
β(x̂∅ − x̂C)2 + (1 − β)�

]

(27)

b(x̂)
def
=

1

1− β

[
(x̂∅ − βx̂C)+

√
β(x̂∅ − x̂C)2 + (1− β)�

]
.

(28)

Remark 7: The function Jq(x̂) is twice continuously dif-
ferentiable at every x̂ ∈ R2. Furthermore, there is no loss in
optimality in minimizing Jq(x̂) over R2 instead of solving the
problem in (25), which is defined over R4 [40].

Therefore, we have an equivalent finite dimensional uncon-
strained optimization problem in terms of the pair of represen-
tation points x̂ that specify the estimator E:

Problem 3: Given the constants � ≥ 0, β ∈ [0, 1) and
fX(x), solve the unconstrained nonlinear optimization problem

minimize Jq(x̂)

with variable x̂ ∈ R2.

C. The Centroid Condition

We now obtain a set of necessary optimality conditions
corresponding to ∇Jq(x̂

∗) = 0.
Proposition 4: Any minimizing x̂∗ = (x̂∗

∅, x̂
∗
C) must

satisfy ∫
[a(x̂∗),b(x̂∗)]

(
x− x̂∗

∅

)
fX(x)dx =0

∫
[a(x̂∗),b(x̂∗)]c

(x − x̂∗
C)fX(x)dx =0.

3When β = 1, the polynomial Px̂(x) admits a single root. This case can be
arbitrarily well approximated by a sequence of problems with βn ∈ [0, 1) such
that {βn} ↑ 1.
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Proposition 4 essentially states that the optimal representation
points must be centroids of the interval A∗

0 = [a(x̂∗), b(x̂∗)],
defined by the two roots of Px̂∗(x), and its complement. If the
density fX has full support on R, the conditions in Proposition
4 can be written more compactly as

x̂∗ = F(x̂∗)

where F : R2 → R2 such that

F(x̂)
def
=

⎡
⎣ 1∫ b(x̂)

a(x̂) fX (x)dx
−1

1−
∫ b(x̂)
a(x̂) fX (x)dx

⎤
⎦ b(x̂)∫
a(x̂)

xfX(x)dx. (29)

Hence, any critical point of Jq(x̂) and, in particular, any
optimal solution x̂∗ are fixed-points of the nonlinear map F .

Proposition 5: If fX has full support on R and is even, the
following statements about the map F in (29) hold:

(i) any nonzero fixed point x̂ must satisfy

sgn(x̂∅) = −sgn(x̂C)

(ii) the vector x̂ = (0, 0) is always a fixed point;
(iii) if x̂ is a fixed point then −x̂ is also a fixed point;
(iv) the set

Lβ
def
= {x̂ ∈ R2|x̂∅ = βx̂C} (30)

is mapped into (0,0);
(v) any fixed point x̂ satisfies

|x̂∅||x̂C| ≤ σ2
X

where σ2
X = V(X).

Proof: The proof can be found in [41]. �
It is easy to show that if fX is an even probability density

function, then the cost Jq(x̂) is an even function. In particular,
if X ∼ N (0, σ2

X) the cost function in (26) is even. One impor-
tant consequence this fact together with Proposition 5 is that,
for any even density fX , the search for an optimal solution x̂∗

may be constrained to either

Q1
def
= {x̂ ∈ R2|x̂∅ ≥ 0, x̂C ≤ 0}

or

Q2
def
= {x̂ ∈ R2|x̂∅ ≤ 0, x̂C ≥ 0}

without loss of optimality. Fig. 2 shows where the stationary
points of F may lie.

V. NUMERICAL EXAMPLES AND THE OPTIMALITY

OF ASYMMETRIC THRESHOLD POLICIES

In this section, we provide examples of optimal policies
for Problem 2 obtained as solutions to Problem 3 when X ∼
N (0, σ2

X).

Fig. 2. The shaded region of R2 shown above contains all the critical
points of Jq(x̂) when fX is an even density. The origin is always a
critical point and the line Lβ is entirely mapped by F into (0, 0).

Fig. 3. Cost function Jq(x̂) in log-scale for σ2
X = 1, β = 0.5, and � = 1.

The log-scale helps us in visualizing the two minima.

Example 1 (Nonconvexity of the Cost Function): Consider
the cost Jq(x̂) for a typical choice of parameters: let X ∼
N (0, 1), β = 0.5 and � = 1 in Problem 3. The plot of the cost
function in log-scale is shown in Fig. 3 and its level curves
are shown in Fig. 4. These two figures allow us to make two
important observations. First, since the sublevel sets are not
convex, Jq(x̂) is neither convex nor quasi-convex. This is the
case even if we constrain its domain to Q1 or Q2. The second
observation is the occurrence of a single minimum in each Qi,
i ∈ {1, 2}. However, due to the intricate structure of Jq(x̂),
obtaining a proof of this fact remains an open problem.

The optimal solutions to the various minimization problems
considered in what follows were obtained using standard non-
linear programming solvers constraining Jq(x̂) to Q1. More
sophisticated algorithms for solving Problem 3 with optimality
guarantees (such as the Branch-and-bound method) can be
used along with the fact that Jq(x̂) can be decomposed as a
difference of convex functions since it is twice continuously
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Fig. 4. Level curves of cost function Jq(x̂) in log-scale for σ2
X = 1, β =

0.5 and � = 1. From the sublevel sets, we can conclude that Jq(x̂) is
neither convex nor quasi-convex. Despite this fact, we can observe that
there is a single minimum in Q1 and another in Q2.

differentiable [42]. However, in view of the observations in
Example 1, this is beyond the scope of this paper.

Example 2 (Optimality of Asymmetric Thresholds): Let
X ∼ N (0, 1), β = 0.5 and � = 1 in Problem 3. A pair of
representation points that minimize the cost function in (26) is
x̂∗ = (0.434,−1.255) corresponding to a cost J ∗

q = 0.681. By
using the expressions in (27) and (28), we obtain the values of
the optimal thresholds of the optimal no-transmission interval
A∗

0 = [−0.653, 4.898]. Therefore, the optimal no-transmission
interval is characterized by asymmetric thresholds. If, on the
other hand, we consider only symmetric threshold policies,
by the centroid conditions, their optimal representation points

are (0, 0)
def
= x̂sym. Hence, the optimal cost within the class of

symmetric policies is

J ∗
sym

def
= Jq(0, 0) = 0.871 > J ∗

q .

We cast the observation about the asymmetry of the optimal
thresholds drawn from Example 2 as the following remark.

Remark 8: For β > 0 the optimal communication policies
for Problem 2 have, in general, asymmetric thresholds.

This may lead us to erroneously assume that when β > 0 the
optimal policies must be asymmetric. The purpose of the next
example is to show this is not always the case.

Example 3 (Optimality of Symmetric Thresholds): Con-
sider Problem 2 with X ∼ N (0, 1), β = 0.1 and � = 1. The
pair of representation points that minimize the cost function
in (26) is x̂∗ = (0, 0), yielding a cost J ∗

q = 0.595. Recovering
the corresponding optimal no-transmission interval we have
A∗

0 = [−1.054, 1.054].
It is also interesting to observe how the optimal thresholds

behave with the variance σ2
X . Table I shows that when σ2

X

increases, the no-transmission interval has a positive drift and
its length increases while its probability decreases. This means

TABLE I
NUMERICAL RESULTS OF THE OPTIMIZATION PROBLEM 2 WHEN

X ∼ N (0, σ2
X), β = 0.1 AND � = 1 FOR DIFFERENT VALUES OF σ2

X

that transmissions will occur more often as the variance of the
random variable X increases.

VI. MODIFIED LLOYD–MAX ALGORITHM

In the last part of the paper we propose an iterative procedure
inspired by the Lloyd–Max algorithm [43] to design optimal
communication and estimation policies for Problem 2. We call
this procedure the modified Lloyd–Max (MLM) algorithm. The
MLM is an alternative to standard nonlinear solvers to find
optimal solutions to Problem 3. The kth iteration of the MLM
algorithm consists of two steps.

• Threshold update step: For a fixed pair of representation
points x̂(k) ∈ R2, update the thresholds that define the no-
transmission interval according to

A
(k)
0 =

[
a
(
x̂(k)

)
, b

(
x̂(k)

)]
.

• Centroid computation step: Obtain a new pair of rep-
resentation points x̂(k+1) as the centroids of A(k)

0 and its
complement, i.e.,

x̂
(k+1)
∅ = E

[
X |X ∈ A

(k)
0

]
x̂
(k+1)
C

= E
[
X |X �∈ A

(k)
0

]
.

Henceforth, we will consider only the Gaussian case by as-
suming that X ∼ N (0, σ2

X). This allows us to make important
claims and observations about the MLM algorithm, properties
of its fixed points and its convergence.

A. An Equivalent Nonlinear Autonomous
Dynamical System

The MLM algorithm outlined above can be understood as a
nonlinear dynamical system described by successive applica-
tions of the map F in (29). For a fixed x̂(0) �= (0, 0)

x̂(k+1) = F
(
x̂(k)

)
, k = 0, 1, . . . (31)

It is important that the initial point x̂(0) is a nonzero vector,
otherwise the algorithm outputs a sequence identically equal to
zero. When X ∼ N (0, σ2

X), it can be shown that the sets Q1

and Q2 are invariant to the map F , i.e.,

F(Qi) ⊂ Qi, i ∈ {1, 2}.

Therefore, a sequence of points generated by (31) will either
belong to Q1 or Q2 depending on the initial condition x̂(0). Fur-
thermore, it is a well-known fact that the Lloyd–Max iterations
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generate a nonincreasing sequence of values of the objective
function [44], i.e.,

Jq

(
x̂(k+1)

)
≤ Jq

(
x̂(k)

)
, k = 0, 1, . . .

B. On the Convergence of the MLM Algorithm

In general, unless it is known that F is a Banach contraction,
there are no guarantees that the dynamical system describing
the MLM algorithm will converge to a unique fixed point.
Moreover, empirical evidence shows that for a very large set
of parameters, there are multiple fixed points. Therefore, it
is unlikely that such contraction properties will hold for F .
However, the fact that the MLM is a descent algorithm together
with the fact that the stationary points in Qi, i ∈ {1, 2} are
isolated indicate that convergence results to a local minimum
may be proved. The paper by Du et al. [45] present several
convergence results for Lloyd–Max type algorithms that can
be used to establish convergence of the MLM. In particular,
[45, Theorem 2.6] states:

If the iterations in the Lloyd algorithm stay in a compact
set where the Lloyd map F is continuous, then the algo-
rithm is globally convergent to a critical point of Jq(x̂).

It is possible to show the existence of such a compact
set when X ∼ N (0, σ2

X), β ∈ [0, 1) and � > 0. Under these
conditions, the MLM is globally convergent to a local minimum
of Jq(x̂) [41].

Remark 9: The classic sufficient condition due to Fleischer
in [40] stating that if fX is a log-concave density with full
support on R, the Lloyd–Max algorithm converges to a unique
stationary point does not hold here due to the nonuniformity of
the distortion metric in the quantization problem in (25).

C. On the Complexity of the MLM Algorithm

The MLM algorithm is executed offline to optimize the
thresholds and representation points that specify the optimal
transmission and estimation policies proposed here. Each it-
eration of the algorithm corresponds to the map (29) being
evaluated. First, the thresholds a(x̂) and b(x̂) are computed,
requiring a total of 5 multiplications and 5 additions. Then,
2 integrals are numerically evaluated.4 Finally, 1 addition
and 2 divisions complete the iteration. Therefore, each itera-
tion of the MLM algorithm requires a total of: 6 additions,
5 multiplications, 2 divisions, and 2 integrations. Furthermore,
it has been shown that the Lloyd–Max algorithm for any num-
ber of quantization levels runs in polynomial time (see [46] and
references therein). Since our algorithm has the same structure
of the traditional Lloyd–Max, the same property also holds for
the MLM, imposing no barriers for its implementation.

D. Numerical Results

When X ∼ N (0, σ2
X) the design of the transmission thresh-

olds and representation points can be done by means of a

4In the Gaussian case, these integrals can be expressed in closed form using
the complementary error (erfc) and exponential (exp) functions.

Fig. 5. Trajectory of the sequence generated by the MLM algorithm
when β = 0.1, � = 1, σ2

X = 1. The level curves indicate that Jq(x̂) has
a single critical point at (0, 0). The initial condition x̂(0) is shown in ⊗
and the remaining points are displayed using +.

globally convergent algorithm, which consists of iteratively
applying a nonlinear map F to a nonzero initial vector x̂(0) ∈
Qi, i ∈ {1, 2}. Since Jq(x̂) is nonconvex we are not able to
claim that a critical point found through the MLM algorithm
is a global minimum, but from observing the general shape
of Jq(x̂) for several combination of parameters, we conjecture
that F will have at most two critical points in each Qi, i = 1, 2.
One of the stationary points is always (0, 0), which can be a
global minimum in some cases. For example, the trajectory of
a sequence {x̂(k)} → (0, 0) generated by the MLM applied to
x̂(0) = (1,−1) when β = 0.1 and � = 1 is shown in Fig. 5.
The stopping criterion used was based on the magnitude of the
gradient at x̂(k) as follows:∥∥∥∇Jq

(
x̂(k)

)∥∥∥ < 10−6. (32)

In most cases, however, the global minimum is a nonzero
stationary point, which will correspond to asymmetric thresh-
olds for the no-transmission interval A∗

0. Fig. 6 illustrates the
trajectory of points generated by F when β = 0.3, � = 1 and
σ2
X = 1. The initial condition x̂(0) was chosen to lie on the

curve x̂∅x̂C = −σ2
X . In all the numerical examples of this

section, the algorithm was initialized with x̂(0) = (σX ,−σX).
We obtained the optimal solutions of Problem 3 with the

probability of collision β varying from zero to 0.99, which are
displayed in Table II. A few observations can be drawn from
this table. First, we notice that when β = 0.1 the number of
iterations Nit to achieve the convergence criterion in (32) is
much larger than for any other row. This is justified by the
values of the cost function evaluated near the origin being very
close to the minimum. Therefore, all the points around (0, 0) are
nearly stationary, hence the slow convergence.

Another interesting observation is that when the proba-
bility of a concurrent transmission β approaches 1, the no-
transmission interval A∗

0 tends to increase. However, we can
see that its probability tends to a value bounded away from 1.
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Fig. 6. Sequence of points generated by F converging to x̂∗ = (0.454,
−1.183). In this case, the parameters are β = 0.3, � = 1 and σ2

X = 1.
The initial condition, represented by ⊗, lies on the curve x̂∅x̂C = −σ2

X .

TABLE II
NUMERICAL RESULTS OF THE OPTIMIZATION PROBLEM 2

WHEN � = 1, σ2
X = 1 AND DIFFERENT VALUES OF β

TABLE III
NUMERICAL RESULTS FOR PROBLEM 2 WHEN β = 0.5

AND σ2
X = 5 FOR VARIOUS VALUES OF �

Therefore, even when the collision event has probability 1, it
may be worth paying the communication cost to transmit a
packet because the optimal strategy always conveys one-bit of
information through the collision and no-transmission symbols.

The dependency of the optimal solutions with the com-
munication cost � when β = 0.5 and σ2

X = 5 is shown in
Table III. We make the following observations. Even when
communication is free (� = 0), the optimal no-transmission
interval has a positive probability. This is because there is a
probability that information will be lost due to a collision. In
order to make the best use of the virtual signaling channel (see

Fig. 7. Implicit channel between the sensor and the remote estimator in
Problem 2.

TABLE IV
PERSON-BY-PERSON OPTIMAL POLICIES FOR DM1 AND DM2 IN
PROBLEM 1 WHERE THE MEASUREMENTS ARE INDEPENDENTLY

DISTRIBUTED AS X1 ∼ N (0, σ2
1) AND X2 ∼ N (0, 1)

Fig. 7), the Shannon entropy H(U) must be nonzero, which
forces P(U = 0) = P(A∗

0) > 0.
When � → +∞ two notable things happen. One is that

the number of iterations required to achieve the convergence
criterion in (32) decreases sharply.

Also, as opposed to the case when β → 1, the probability
of the no-transmission interval tends to one, P(A∗

0) → 1, as �
increases. Therefore, not transmitting will turn out to be optimal
in the regime of very large communication costs.

E. Person-by-Person Optimal Policies for Problem 1

Table IV illustrates that the results developed in the previous
sections can be used to obtain person-by-person optimal poli-
cies for Problem 1 when Xi ∼ N (0, σ2

i ), i ∈ {1, 2}. Letting
σ2
2 = 1 and varying σ2

1 , we applied the MLM algorithm, alter-
nating between the optimization of the policies for DM1 and
DM2 until a fixed point was found. We do not have a proof that
this procedure converges globally, but the policies obtained can
be verified to be person-by-person optimal. The communication
policy for DMi is summarized by its no-transmission interval
denoted by Ai,0.

We observe that as the variance of the observations of DM1

increases, the person-by-person optimal policies are such that
the channel will be more often accessed by DM1 and less often
accessed by DM2. This will cause a decrease in the probabilities
of collisions and of an idle channel. It is interesting to note
that all the policies listed in Table IV outperform traditional
sensor scheduling policies in which only the sensor measuring
the random variable with the largest variance, which is the
one that can reduce the cost the most, transmits. In that case,
even with collisions, the person-by-person optimal policies
when σ2

1 = σ2
2 = 1 outperform the naive scheduling policy

by approximately 46%. That is the case even when σ2
1 = 5,

which is considerably larger than σ2
2 = 1, yielding a gain of

approximately 3% over the scheduling policy. Also note that
when σ2

1 = σ2
2 = 1, the framework of Problem 1 is completely

symmetric, i.e., X1 and X2 are identically distributed and fX



VASCONCELOS AND MARTINS: OPTIMAL ESTIMATION OVER THE COLLISION CHANNEL 333

is an even probability density function. However, the person-
by-person optimal policies have asymmetric thresholds. This
is a major departure from the previous results in remote esti-
mation from [29]–[33], all of which establish the optimality of
symmetric threshold policies.

F. On the Optimality of Asymmetric Thresholds

An interesting feature of the person-by-person policies of
Table IV is the asymmetry of optimal thresholds. This can be
intuitively justified by the presence of a collision symbol at
the channel output, which can be used to convey information
to the remote estimator. Note that when the probability of
the channel being occupied in Problem 2 is zero, the optimal
policies are always symmetric. The presence of two distinct
symbols for collision and no-transmission creates an implicit
noiseless channel between the sensor and estimator shown in
Fig. 7. For a given communication cost, asymmetric communi-
cation policies can lower the variance of the estimation error in
Problem 2 and, consequently, may be optimal for Problem 1.
Notice that for the models in [4], in which collisions and
communication costs are not considered, it is optimal to always
transmit.

VII. CONCLUSION

We studied the collision channel as a model for interfer-
ence in a multisensor remote estimation problem. Our goal
was to characterize optimal communication policies and the
tradeoffs that occur in the design of optimal communication
policies in a simple interference setting. We characterized the
threshold structure of optimal policies using a person-by-person
optimality approach. We showed that, from the perspective of
a single decision maker, the aggregate quadratic cost can be
decomposed in two terms: a mean squared estimation error
and a communication cost. For this cost, we proved that the
optimal communication policies have a threshold structure.
Policy design is then related to a problem of finding an optimal
one-bit quantizer for the sensor’s measurement. An iterative
scheme that can be used to find locally optimal thresholds was
proposed.

A. Consequences for More General Classes of Systems

In most multiagent sequential decision making problems, it is
useful to solve the problem for a single pair of agents in a single
time step to characterize the structure of the optimal policies.
This paper takes a first step in solving a decentralized sequential
estimation problem over a collision channel, providing valuable
insights into the nature of its optimal solutions. Despite the
apparent simplicity of our model, our results have implications
for a wide class of systems. First, the structural results in this
paper also hold for continuous random vectors, requiring only
minor modifications in the proofs. We chose to present the
results for scalar random variables to simplify the proofs and
facilitate the visualization of the threshold policies in R, since
in Rn they would become hyper-ellipsoidal surfaces. Another
important feature of our formulation is that the results hold for

an arbitrary number of sensor nodes measuring independent
random variables. In order to see this, we need the additional
assumption that the remote estimator can decode the index
of the sensors that were involved in a collision. Then, when
solving the person-by-person optimization problem, we can
treat the sensors with fixed strategies as a “superuser” observing
a random vector and occupying the channel with a given
probability β. Following the same arguments of Section III we
obtain the same structural result.

The one-shot problem we have solved is a fundamental
building block for the sequential problem. The fact that the
result is independent of the probability density functions of the
measurements is particularly important in the sequential case
with feedback because the state of a Gauss-Markov process
conditioned on the channel outputs or acknowledgements has a
distribution that is no longer Gaussian. Finally, we have shown
that the optimal thresholds can be asymmetric for a single
stage problem with even probability density functions. This
implies that the restriction to symmetric threshold policies is
suboptimal for more general sequential event-based estimation
problems over the collision channel.

B. Future Work

There are many opportunities for future work that branch
out from the problems studied here. One important question is
to investigate whether person-by-person optimal solutions for
Problem 1 are in fact team-optimal or not. A natural extension
of the model presented here is to allow the channel to supportN
users and a collision event when M simultaneous transmissions
are made. Another open question is to determine the structure
of optimal policies when observations are correlated instead of
independent. Sequential versions of Problem 1 and Problem 2
are interesting and challenging problems, which are related to
sequential one-bit quantization schemes such as sigma-delta
modulators.

APPENDIX A
AUXILIARY RESULTS ON CONTINUITY

This Appendix includes two propositions that state important
continuity properties of the costs for Problems 1 and 2. In
particular, they state that when evaluated for deterministic
threshold policies, the cost varies continuously with respect to
the thresholds. This is observation is key to show the existence
of an optimum in Theorems 1 and 2.

Proposition 6: Let (Ū1, Ū2) be a given pair of deterministic
threshold policies characterized by thresholds ā1, b̄1, ā2 and b̄2
in R̄. Let {(Ŭ1,(n), Ŭ2,(n))}

∞
n=0

be a given sequence of poli-

cies with associated thresholds {ă1,(n)}∞n=0
, {b̆1,(n)}

∞
n=0

,

{ă2,(n)}∞n=0
and {b̆2,(n)}

∞
n=0

. If limn→∞ ă1,(n) = ā1,

limn→∞ b̆1,(n) = b̄1, limn→∞ ă2,(n) = ā2 and limn→∞ b̆2,(n) =
b̄2 holds then the following also holds:

lim
n→∞

J
(
Ŭ1,(n), Ŭ2,(n)

)
= J (Ū1, Ū2). (33)

Proposition 7: Let Ū be a deterministic threshold policy
characterized by thresholds ā and b̄ in R̄, with ā ≤ b̄. Let
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U(n) be a sequence of policies for problem 2 with associated
thresholds a(n) and b(n) that satisfy limn→∞ a(n) = ā and
limn→∞ b(n) = b̄. The following holds:

lim
n→∞

J
(
U(n)

)
= J(Ū). (34)

APPENDIX B
STRONG DUALITY

The purpose of this Appendix is to provide a proof that, under
the conditions of Lemma 1, strong duality holds for the problem
in (10). This is important since, as opposed to their finite di-
mensional counterparts, strong duality for infinite dimensional
linear programs does not necessarily hold. Our proof will hinge
on a result due to Borwein and Lewis [47] adapted by Limber
and Goodrich in [48]. The constraint qualification under which
strong duality holds involves the concepts of quasi interior (qi)
and quasi-relative interior (qri) of a set. The relative interior of
a set is denoted by ri.

Theorem 3 (Limber and Goodrich [48]—
Theorem 4.1): Let G be a Banach space, J : G → (−∞,+∞]
a convex functional, A : G → Rn a linear continuous map, and
Gc ⊂ G a closed convex set. Let b ∈ Rn be a fixed vector such
that b ∈ ri A(Gc) and suppose that

p∗ = inf {J (G)|A(G) = b, G ∈ Gc}

is finite. If

d∗ = sup
ν∈Rn

{
bTν + inf

G∈Gc

{
J (G)− νTA(G)

}}

then p∗ = d∗, i.e., strong duality holds and the maximum is
attained at some ν∗ ∈ Rn. Since riA(Gc) = A(qri Gc), when
qri Gc �= ∅, this can be restated as follows: if

∃G ∈ qri Gcsuch that A(G) = b

then p∗ = d∗.
Proof: The reader is referred to [47] and [48]. �

We will verify that the conditions of Theorem 3 are indeed
satisfied for the optimization problem in (10):

(i) The space L2
μ(R) is a Banach space.

(ii) The objective functional is linear in G and therefore
convex.

(iii) The map A : L2
μ(R) → R2, where A(G)

def
=

[E[XG(X)]E[G(X)]]T is linear in G, and it is also
bounded and therefore continuous. Boundedness can be
verified as follows.:

‖A(G)‖22 = |E [XG(X)]|2 + |E [G(X)]|2

≤
(
E[X2] + 1

)
E
[
|G(X)|2

]
< +∞.

The first inequality follows from the Cauchy-Schwarz
inequality applied to the first term and Jensen’s inequality
applied to the second term. The strict inequality in the
last step follows from the fact that X has finite second
moment and G ∈ L2

μ(R).

(iv) The set

Gc =

{
G ∈ L2

μ(R)|0 ≤ G(x) ≤ 1

1− α
, μ− a.e.

}

is closed and convex.
(v) Assuming the existence of a feasible point we have

p∗ ≤ E
[
X2G(X)

]
≤ 1

1− α
E[X2] < +∞

where the strict inequality follows from X having finite
second moment.

(vi) Finally, we must check if the following constraint quali-
fication is satisfied:

∃G ∈ qri Gc such that A(G) = b

which corresponds to Borwein–Lewis’ constraint quali-
fication in [48]. Therefore, in order to have strong du-
ality, there must be feasible point G ∈ qri Gc such that
A(G) = [γ 1]T. From [48, Theorem 2.1, Example 2.2],
we have

qri Gc =

{
G ∈ L2

μ(R)

∣∣∣∣0<G(x)<
1

1− α
, μ− a.e.

}

which is the condition that must be satisfied for Lemma 1
to hold.

APPENDIX C

In this Appendix we state and prove the following result used
in the proof of Lemma 1.

Proposition 8: If ν∗ is a maximizer of the the Lagrange dual
function in (13), the polynomial x2 + ν∗0x+ ν∗1 always admits
distinct real roots.

Proof: We will show that (ν∗0)
2 > 4ν∗1. Suppose that ν

satisfies ν20 ≤ 4ν1, implying that [x2 + ν0x+ ν1]
− ≡ 0. The

Lagrange dual function becomes C∗(ν) = −ν1 − ν0x̂∅, its
supremum subject to 4ν1 ≥ ν20 is equal to x̂2

∅ and it is achieved
by ν∗0 = −2x̂∅ and ν∗1 = x̂2

∅.
When ν20 > 4ν1, the polynomial x2 + ν0x+ ν1 admits two

distinct real roots denoted by a(ν) and b(ν)

a(ν), b(ν) =
−ν0 ±

√
ν20 − 4ν1
2

.

Let ν0 = −2x̂∅ and ν1 = x̂2
∅ − δ, for some δ > 0. Clearly,

ν20 − 4ν1 = 4δ > 0. We will show that ∃δ > 0 such that
C∗(ν) > x̂2

∅ and therefore there is no loss in optimality in re-
stricting the dual problem to {ν ∈ R2|ν20 > 4ν1}. We start with

C∗(ν)

∣∣∣∣∣ ν0=−2x̂∅

ν1=x̂2
∅

−δ

= x̂2
∅ + δ

+
1

1− α

x̂∅+
√
δ∫

x̂∅−
√
δ

[
(x− x̂∅)

2 − δ
]
fX(x)dx

and define

x̂∅+
√
δ∫

x̂∅−
√
δ

(x− x̂∅)
2fX(x)dx

def
= W(δ).
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When x varies from x̂∅ −
√
δ to x̂∅ +

√
δ, the quantity (x−

x̂∅)
2 varies from 0 to δ. Therefore

0 ≤ W(δ) ≤
x̂∅+

√
δ∫

x̂∅−
√
δ

δfX(x)dx
def
= V(δ).

Since

V(δ)
δ

=

x̂∅+
√
δ∫

x̂∅−
√
δ

fX(x)dx

the limit δ ↓ 0 yields V(δ)/δ → 0. Therefore, V(δ) = o(δ) and
consequently, W(δ) = o(δ). Implying that

C∗(ν)

∣∣∣∣∣ ν0=−2x̂∅

ν1=x̂2
∅

−δ

= x̂2
∅ + δ + o(δ) > x̂2

∅.

�
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