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Abstract—Internet of Things networks are the large-scale
distributed systems consisting of a massive number of sim-
ple devices communicating, typically, over a shared wire-
less medium. This new paradigm requires novel ways of
coordinating access to limited communication resources
without introducing unreasonable delays. Herein, the opti-
mal design of a remote estimation system with n sensors
communicating with a fusion center via a collision channel
of limited capacity k ≤ n is considered. In particular, for
independent and identically distributed observations with
a symmetric probability density function, we show that the
problem of minimizing the mean-squared error with respect
to a threshold strategy is quasi-convex. When coordination
among sensors via a local communication network is avail-
able, the online learning of possibly unknown parameters of
the probabilistic model is possible, enabling each sensor to
optimize its own threshold autonomously. We propose two
strategies for remote estimation with local communication:
1) one strategy swiftly reaches the performance of the opti-
mal decentralized threshold policy and 2) the second strat-
egy approaches the performance of the optimal centralized
scheme with a slower convergence rate. A hybrid scheme
that combines the best of both approaches is proposed,
offering fast convergence and excellent performance.

Index Terms—Decision theory, estimation, multi-agent
systems, networked control systems, optimization.

I. INTRODUCTION

INTERNET of Things (IoT) networks are systems comprised
of a large number of low-cost devices intermittently trans-

mitting small bundles of delay-sensitive data to access points or
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neighboring devices [1]. Specific IoT applications suffer from
limited communication bandwidth. For instance, low power
wide-area (LPWA) networks are a class of IoT systems explic-
itly designed to enable machine-to-machine communications
characterized by infrequent transmitting nodes operating under
strict low power, complexity, and bandwidth constraints [2].
LPWA communication protocols, such as LoRa and SigFox,
are widely used to provide connectivity in static and mobile
sensor networks [3]. However, these systems operate in unli-
censed spectrum bands, which means that multiple simultaneous
transmissions may lead to undesirable packet collisions and loss
in performance.

Our goal is to develop new techniques for medium access con-
trol for IoT systems resilient to packet collisions. We consider
the design of an LPWA network system for remote monitoring,
where a large number of sensors communicate with a base
station/fusion center under a strict constraint on bandwidth. For
that purpose, we enable autonomous and distributed optimal
allocation of limited communication resources by using event-
triggered communication via a threshold strategy, e.g., [4] and
references therein. In the absence of local coordination among
sensors, event-triggered communication strategies improve the
system performance by forcing the sensors to transmit only their
most informative measurements. When local communication is
available, by exchanging information at most with their immedi-
ate neighbors, each sensor can tune its thresholds to mitigate the
negative effect of collisions even under incomplete knowledge
of its measurements’ underlying statistical model.

In this article, we study the remote sensing system depicted in
Fig. 1, where n sensors observing independent and identically
distributed continuous random variables communicate with a
fusion center over a collision channel. The channel can only
support the reliable transmission of at most k packets, where
k ≤ n. If the number of simultaneous transmissions is larger
than k, a collision occurs. We are interested in the design of
event-triggered transmission strategies to control channel access
in a distributed way with the goal of optimizing estimation
performance.

Our abstraction for a sensor network of multiple identical
sensors communicating with a fusion center over a finite capacity
collision channel using low complexity threshold policies con-
forms with the requirements of LPWA networks. The central
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Fig. 1. System diagram for remote estimation over the collision chan-
nel.

insight here is that, in many sensing applications, the com-
munication of uninformative measurements can be sacrificed
without significant loss in performance, freeing resources to
the remaining sensors in the network. This cooperation among
sensors is the centerpiece of this article, which seeks to lay the
foundations of a new framework for distributed communication
protocols under assumptions of the observations’ probabilistic
model.

The optimal design of remote estimation systems has been of
great interest in the past decade, and there exists rich literature
on these systems under different technical assumptions. The
optimization of transmission policies for a system involving
a single sensor subject to a limited number of transmissions
over a finite horizon was studied in [5]. Instead of limiting
the number of transmissions, the authors of [6] considered the
problem of minimizing an objective function consisting of the
mean-squared error (MSE) plus transmission cost. Both [5]
and [6] showed that symmetric threshold strategies are optimal
under symmetry conditions of the probabilistic model of the
measurements. Those results were later generalized in [7], which
obtained similar structural results for a system with an energy
harvesting sensor. An in-depth comprehensive survey of those
and other earlier results can be found in [8]. More recently,
connections between remote estimation and the notion of age
of information have been established in [9].

Unlike the works mentioned above, this article considers
the system with multiple sensors under a limited number of
simultaneous transmissions. Remote sensing systems with mul-
tiple sensors sharing a collision channel were first considered
in [10], which showed that the optimal transmission policies
for symmetrically distributed observations were characterized
by asymmetric thresholds. A similar sensing system with dis-
crete observations was considered in [11]. Remote estimation
of autoregressive Markov processes over the collision channel
has also been considered in [12], in which symmetric threshold
policies are used in a random access scheme. Notably, Chen et
al. [12] also allude to the connection between remote estimation
and age of information in a multisensor setting, thereby extend-
ing it [9]. Recent works in this area have incorporated reinforce-
ment learning into sensor scheduling and remote estimation,
when certain parameters of the system are unknown [13]–[15].
Another set of results considered other relevant issues concern-
ing privacy [16], adversarial jamming [17], packet drops [18],
and energy management [19], [20].

The system considered here is a multisensor system commu-
nicating over a collision channel of capacity k ≥ 1. Instead of
focusing on obtaining structural results, we concentrate on de-
signing optimal thresholds for a symmetric system, correspond-
ing to a symmetric team-decision problem. The sensors obser-
vations have identical statistical properties, i.e., they are drawn
according to the same distribution. The symmetry assumption al-
lows us to obtain a tractable quasi-convex optimization problem
when the sensors observations are symmetric around its mean.
In contrast, asymmetric formulations inevitably would lead to
a nonconvex problem for which optimal solutions would be
difficult to obtain. The performance of the optimal decentralized
system is compared against a centralized scheme where only the
sensors with the k most informative measurements are allowed
to transmit. This is a generalization of the observation-driven
scheduling problem for remote sensing studied in [21], in which
a scheduler collects the measurements from all sensors, and
chooses a single one to be transmitted to the destination. For
independent observations distributed according to a symmetric
probability density, [21] showed that a person-by-person optimal
policy consists of sending the measurement with the largest
magnitude to the fusion center. Remarkably, the performance
of the optimal decentralized system without coordination for
Gaussian observations is very close to the performance of the
centralized scheme, which requires all the sensors to exchange
their observations over a local communication network.

To close the existing gap in performance among the optimal
decentralized scheme and the centralized one, we must allow
for local communication. The additional gain in performance
comes at a price in communication delay, since the sensors need
to exchange messages locally to perform a distributed quantile
regression task [22]–[24]. For a moderate to large number of
sensors, distributed quantile estimation requires hundreds of
local communication rounds; however, we propose a smart ini-
tialization mechanism based on average consensus [25], which
improves the convergence time by orders of magnitude, allowing
us to close the optimality gap swiftly. Moreover, we provide
numerical evidence that our scheme performs very well even
when the density is symmetric but unknown. Finally, we provide
an upper bound on the expected switching-time between the
average-consensus and the quantile-regression schemes.

In this article, we assume that each sensor’s observations are
drawn from a distribution with a symmetric pdf fX . In Sections
II and III, full knowledge of fX is required. In Section IV-A, we
assume that fX belongs to a parametric class of densities with
unknown parameters, e.g., N (0, σ2). In Section IV-B and C, we
assume that fX is unknown.

Preliminary versions of Theorems 1 and 2 have appeared
in [26], which only considered the scheme without local com-
munication and contained partial proofs. In this article, we
present complete proofs of the previous results, and additionally
propose an exact centralized lower bound to Problem 1 plus three
decentralized schemes based on local communication together
with corresponding analysis and simulations.

The main contributions of this article are as follows.
1) In the absence of local communication, we study the

design of a globally optimal threshold communication
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strategy under a symmetry assumption of the probability
distribution of the observations. We show that the MSE
is a strictly quasi-convex function of the threshold, which
is amenable to low complexity numerical optimization
schemes. We provide numerical evidence that this op-
timal threshold policy is robust to perturbations of the
underlying probabilistic model that violate the symmetry
assumption.

2) In the presence of local communication, the sensors can
coordinate to learn a common threshold strategy when
the underlying probability distribution is not completely
specified, or possibly completely unknown. We propose
a consensus-based scheme for zero-mean Gaussian dis-
tributions and unknown variance, and a quantile esti-
mation scheme for unknown zero-mean distributions. In
the consensus-based scheme, each sensor estimates the
unknown variance and then computes its threshold to
determine locally whether to transmit or not. This scheme
swiftly reaches the performance of the optimal decen-
tralized scheme. In the quantile estimation scheme, each
sensor estimates locally thekth largest observation among
all observations and uses it as the threshold to decide
whether to transmit or not. This scheme approaches the
performance of the best known centralized scheme albeit
with a slow convergence rate.

3) We propose a hybrid scheme that uses the consensus
scheme via a Gaussian approximation to bootstrap the
quantile estimation scheme. This scheme achieves both
fast convergence and asymptotic performance close to the
centralized policy. We provide a bound on the switching-
time between the two schemes, and an example, which
shows that the scheme is robust to distribution mismatch.

II. PROBLEM FORMULATION

This section establishes the problem setup for a decentralized,
remote estimation system over a collision channel of limited
capacity. Consider the system diagram shown in Fig. 1. There
aren sensors and a fusion centerE , which are connected by a col-
lision channel K. The ith sensor observes a zero-mean random
variable Xi, i ∈ {1, . . . , n}. The random variables {Xi}ni=1

are independent and identically distributed (i.i.d.), and admit a
probability density function (pdf) fX(x), such that fX(x) > 0
for x ∈ R. Each sensor decides whether to transmit its observed
measurement to the fusion center or remain silent according to
a threshold strategy.

Definition 1 (Threshold Strategy): Let Di ∈ {0, 1} be the
binary decision variable of the ith sensor, where Di = 1 denotes
that the sensor decides to transmit its measurement, and Di = 0
denotes that the sensor decides to remain silent. A threshold
strategy for the ith sensor is a function Di : R → {0, 1} such
that

Di(x)
def
=1(|x| ≥ T ) (1)

where T ∈ [0,+∞) denotes the threshold parameter and 1(S)
denotes the indicator function of the statement S.

Remark 1: This formulation is an instance of a symmetric
stochastic team [27]. This particular class of team decision
problems is often more tractable because the optimization is
over a single policy. It also allows to study the performance and
robustness of optimal strategies with respect to the number of
sensors. In some cases, it is possible to characterize the system’s
performance in the regime when the number of sensors is infinite,
a particularly relevant feature for IoT applications.

After making a decision, each sensor produces a channel input
packet, Si, defined as follows:

Si
def
=

{
(i,Xi), if Di = 1
∅, if Di = 0

, i ∈ {1, . . . , n}. (2)

Remark 2: We assume that if a sensor decides to transmit,
its unique identification number i is transmitted along with its
measurement. This is done so that the receiver can identify
the origin of the successfully received communication packets
without ambiguity.

The collection of n sensors shares a collision channel K of
limited capacity k, defined as follows:

Definition 2 (Collision Channel of Capacity k): The col-
lision channel of capacity k allows the communication of at

most k ≤ n simultaneous packets. Let D
def
= {i | Di = 1} denote

the set of indices of all transmitting sensors. The output of the
collision channel Y is given by the following:

Y
def
=

⎧⎪⎨
⎪⎩
∅, if |D| = 0

{(i,Xi) | i ∈ D} , if 1 ≤ |D| ≤ k

(C,D), otherwise.

(3)

The special symbol C denotes that a collision occurred and ∅

denotes that the channel is idle.
Assumption 1: When a collision occurs, we assume that the

fusion center can decode the indices of the transmitting sensors.
Our purpose is to solve the following estimation problem over

the collision channel under the normalized mean squared error
(NMSE) criterion.

Problem 1: Assuming that each sensor uses a threshold strat-
egy of the form of (1), given the number of sensors n, the pdf of
the sensors’ observations fX , and the capacity of the collision
channel k find a threshold T that minimizes the NMSE

Jn,k(T )
def
=

1

n
E

[
n∑

i=1

(
Xi − X̂i

)2
]

(4)

where the estimates X̂i are given by the following:

X̂i
def
=E[Xi | Y ], i ∈ {1, . . . , n}. (5)

III. OPTIMAL DECENTRALIZED SCHEME WITHOUT

LOCAL COMMUNICATION

A. Quasi-Convexity of Problem 1

Assuming that there is no local communication among the
sensors, and that the distribution of the observations is sym-
metric, Problem 1 can be solved exactly. We begin by deriving
alternative expressions for (4) and (5). We will then show the
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quasi-convexity of Problem 1, which can thus be solved using
low complexity numerical procedures.

Lemma 1: Provided the pdf fX is symmetric; given the set

of the decision variables D
def
= {i | Di = 1}, the output of the

estimator can be rewritten as

X̂i
w.p.1
=

{
Xi, if |D| ≤ k and i ∈ D

0, otherwise
i ∈ {1, . . . , n}. (6)

Proof: We will compute the conditional expectation in (5) for
every possible output of the collision channel. When there is no
collision and Xi was transmitted, i.e., |D| ≤ k and Di = 1, we
have (i,Xi) ∈ Y , which implies that

X̂i = E[Xi | Y ]
w.p.1
= Xi. (7)

When a collision occurs and Xi was transmitted, i.e., |D| > k
and Di = 1, we have Y = (C,D) and know i ∈ D. Assumption
1 implies that

X̂i
(a)
= E[Xi | Di = 1] = E[Xi | |Xi| ≥ T ]

(b)
= 0 (8)

where (a) is due to {X}ni=1 being a collection of independent
random variables, and (b) is due to the symmetry of fX .

When Xi is not transmitted, the index i does not appear in the
channel output Y , which implies that Di = 0. In this case

X̂i = E[Xi | Di = 0] = E[Xi | |Xi| < T ]
(c)
= 0 (9)

where (c) is due to the symmetry of the pdf fX .
Lemma 2: Let {Xi}ni=1 be an i.i.d. sequence distributed

according to a symmetric pdf fX . The objective function in
Problem 1 can be expressed as follows:

Jn,k(T ) = E
[
X2

]−E
[
X21(|X| ≥ T )

]
Fn,k(T ) (10)

where

Fn,k(T )
def
=

k−1∑
�=0

(
n− 1

�

)
(1− q(T ))� q(T )n−1−� (11)

and

q(T )
def
=P(|X| < T ). (12)

Proof: See Appendix A.
Theorem 1: The cost function Jn,k(T ) in (10) is strictly

quasi-convex and admits a unique optimal threshold T � such
that

T � = argmin
T≥0

Jn,k(T ). (13)

Proof: See Appendix B.
Remark 3: Theorem 1 holds for any symmetric pdf, regard-

less of the number of modes of the distribution. We highlight
that proving quasi-convexity is typically a nontrivial task, and
existing methods rely on composition rules of operations that
preserve quasi-convexity, which are not available in our case.
From an algorithmic standpoint, quasi-convexity is a property
as desirable as convexity. Although a closed-form expression to
T � is unlikely to exist, we can compute it via iterative numerical
methods. Due to the continuity and quasi-convexity of Jn,k(T )

(established in Appendix B), we can use disciplined quasi-
convex programming to compute the optimal threshold [28].

When using numerical optimization solvers, it is important to
properly initialize the interval to be searched, especially when
the support of the pdf fX is unbounded. Next, we will provide
an interval initialization by analyzing the 0–1 phase transition
property of Fn,k. By inspection of (10), when T is such that
Fn,k(T ) ≈ 0, the cost is Jn,k(T ) ≈ E[X2]; when T is such
that Fn,k(T ) ≈ 1, then Jn,k(T ) ≈ E[X21(|X| < T )], which
is nondecreasing in T . Therefore, the optimal T � occurs in the
interval when Fn,k transitions from 0 to 1.

Lemma 3: Let T � be the optimal threshold for the cost
function Jn,k(T ) in (10). Then

T � ≥ q−1

(
1− k

n

)
. (14)

Proof: See Appendix C.
Lemma 4: Let d > 0. Then the following inequality holds:

For T > q−1(ζ):

Fn,k(T ) ≥ 1− 10−d (15)

where ζ is the unique zero of

gn,k,d(q)
def
= k − (n− 1)(1− q)− k ln

(
k

n− 1

)
+ k ln (1− q) + d ln 10 (16)

in the interval (1− k/(n− 1), 1].
Proof: See Appendix D.
Theorem 2: There exists ζ̄ > 0 such that

q−1

(
1− k

n

)
≤ T � ≤ q−1

(
ζ̄
)
. (17)

Proof: The proof follows from Lemmas 3 and 4 and the fact
that one can always set d as large as necessary to guarantee that
the upper bound includes the optimal threshold.

Remark 4: Theorem 2 provides an interval that is guaranteed
to contain the optimal solution. Typically, d = 2 or 3 will suffice.
The significance of Theorem 2 is that it let us avoid initializing a
numerical solver whereJn,k(T ) is flat, which may lead to falsely
declaring that a local minimum has been found, and failing to
find the unique global minimum guaranteed by Theorem 1.

B. Centralized Lower Bound to Problem 1

When the goal is to minimize the MSE of zero-mean indepen-
dent variables such as in Problem 1, the best known centralized
strategy consists of transmitting the k largest measurements in
magnitude to the fusion center [21]. The performance of this
strategy serves as a lower bound to decentralized communication
strategies over the collision channel with capacity k. For the
“top-k” strategy, the value of the cost function is given by

J L
n,k

def
=

1

n

n∑
i=k+1

E
[
Z2
(i)

]
(18)
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Fig. 2. Cost function Jn,k(T ) as a function of the threshold T with
n = 1000 sensors and a collision channel with capacity k = 100 packets
for Gaussian observations of different variances. The dashed horizontal
lines represent the corresponding centralized lower bounds JL

n,k given
in (18).

where Zi
def
= |Xi|, and Z(i) is defined as the ith largest value in

{Z�}n�=1 such that

Z(n) ≤ Z(n−1) ≤ · · · ≤ Z(1). (19)

From results on ordered statistics [29], the second moment of
Z(i) is given by the following:

E
[
Z2
(i)

]
=

∫∞
0 z2FZ(z)

n−i (1− FZ(z))
i−1 fZ(z)dz

B(n− i+ 1, i)
(20)

where fZ and FZ are the pdf and cdf of Z, respectively, and
B(·, ·) denotes the beta function. Since Z = |X|, we have

FZ(z) = 2FX(z)− 1, z ≥ 0 (21)

and

fZ(z) = 2fX(z), z ≥ 0. (22)

This lower bound is used as benchmark in the examples shown
in this article. The gap between the performance of the optimal
threshold policy and the value of J L

n,k corresponds to the loss
due to decentralization.

C. Numerical Results

Fig. 2 shows the normalized MSE Jn,k(T ) for a system with
n = 1000 sensors and a collision channel of capacity k = 100
making Gaussian observations with different variances. We can
observe the quasi-convexity property, and compare the perfor-
mance of the optimal decentralized scheme Jn,k(T ) to the cen-
tralized lower boundJ L

n,k. From this figure, we can also observe
that Jn,k(T ) is flat at regions away from the optimal threshold
T �. This observation reinforces the need for Theorem 2 and
proper initialization of the numerical solvers used to compute
T �. Table I shows the search intervals computed using Theorem
2 with d = 3, assuming Gaussian observations N (0, σ2).

For a system with n = 1000 sensors, Fig. 3 displays the
dependency of the optimal MSE Jn,k(T

�) and the lower bound
J L
n,k as function of the capacity of the collision channel k for

standard Gaussian observations, Xi ∼ N (0, 1). As the capacity

TABLE I
SEARCH INTERVAL FOR GAUSSIAN OBSERVATIONS. THE UPPER BOUND ON

T � IS FOUND USING LEMMA 4 WITH d = 3

Fig. 3. Optimal cost Jn,k(T
�) and the lower bound JL

n,k as functions
of the capacity of the collision channel k (performance of the optimal de-
centralized and centralized schemes) with n = 1000. The observations
at the sensors are i.i.d. according to a standard Gaussian distribution,
X ∼ N (0, 1).

k increases, more measurements are successfully received at the
fusion center, and the NMSE decreases.

We can also observe that the optimal choice for the thresh-
old successfully mitigates the occurrence of collisions. Conse-
quently, the decentralized scheme performs remarkably close to
the centralized scheme. The gap between the solid (decentral-
ized) and the dotted (centralized) curves is the performance loss
due to decentralization.

The pdf’s symmetry, identical distributions and known means
are assumptions required to obtain our technical results. How-
ever, our optimal symmetric threshold policies are surprisingly
robust in the absence of all three conditions mentioned above.
Consider the following numerical example, where each sen-
sor makes observations distributed according Xi ∼ N (μi, 1),
where μi ∈ [−ε,+ε]. We simulate the remote estimation system
for 100 sample paths. For each sample path, a vector d, where
each component di is uniformly distributed over the interval
[−1, 1] is independently generated and kept fixed. Then, the
mean μi = εdi is computed. The value of the mean is unknown
to the sensors and the estimator, which use a strategy designed
under the assumption that μi = 0, i ∈ {1, . . . , n}. In this case,
the observations are statistically independent; however, the pdfs
are neither symmetric nor identically distributed. Adjusting the
constant ε from 0 to 1, we can vary the degree of asymmetry.

We measure the NMSE using a Monte Carlo simulation for
each point of each sample path, using 104 observation samples
for each of then sensors. In Fig. 4, we see that the performance of
the system employing a symmetric threshold strategy designed
for a nominal symmetric and i.i.d. system is robust to variations
in the mean for ε ≤ 0.25. That robustness is consistent across
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Fig. 4. Monte-Carlo Simulation for the remote estimation system for
random perturbations on the mean μi ∼ U [−ε, ε] as a function of ε with
n = 10100, 1000 sensors and capacity k = 1, 10, 100.

systems with a broad range of number of sensors. Clearly, when ε
increases, the performance of the system degrades. The purpose
of this simulation is to show that the system can be used, in
practice, under moderate perturbations in the symmetry of the
probabilistic model.

IV. DECENTRALIZED SCHEMES WITH LOCAL

COMMUNICATION

Consider a connected undirected graph G = N,E with n
nodes, each node represents a sensor observing an independent
random variable as before. Here, N = {1, . . . , n} denotes the
set of sensors and E ⊂ N × N denotes the set of edges between
nodes. Let Ni denote the set of neighbors of the ith sensor, and

di
def
= |Ni|. By local communication, we mean that if (i, j) ∈ E,

sensors i and j can communicate with each other for a given
number of rounds before making their final decisions on whether
to attempt a transmission to the fusion center or not. Each round
of local communication has short range and represents one unit
of accrued delay in communication between the sensors and
fusion center.

A. Average Consensus-Based Decentralized Scheme

In many scenarios, we may not have access to one or more
parameters of the pdf fX although we know that the distribution
is of a certain type, e.g., we may know that the distribution is
Gaussian, but its mean and/or variance is unknown. By means
of local communication among the sensors, we enable them
to estimate the unavailable parameters such that the optimal
threshold T � may be computed in a decentralized way. This
is done at the expense of some delay in communication with
the fusion center. Using a distributed averaging algorithm, we
describe how the method works in the Gaussian case. A similar
procedure would also work for other symmetric densities such
as Laplace, Uniform, Cauchy, and Logistic, among others.

Assume that the sensors make i.i.d. observations drawn from
a zero-mean Gaussian distribution with known mean and un-
known variance, e.g., N (0, σ2). The observation from sensor i

is denoted xi. An unbiased estimator σ̂n for the variance of a

dataset {x1, . . . , xn} is given by σ̂n
def
=n−1

∑
i x

2
i .

The general case with a nonzero mean can also be easily
handled, but requires an additional estimator for the sample
mean at each sensor, and that each sensor transmits its sample
mean estimate to the estimator.

Let yi(t) denote the local estimate of the sample variance at
the ith sensor after the tth round of local communication. We ini-
tialize the local estimates by setting yi(0)

def
=x2

i , i = {1, . . . , n}.
Using a distributed averaging scheme, each sensor estimates

ȳ
def
=n−1

∑n
i yi(0) = σ̂n. On the tth round of local communica-

tion each sensor performs the following steps:
1) Distributed Variance Estimation: Each node updates its

local estimate based on the local estimates of its neighbors
according to the Metropolis1 update rule [30]:

yi(t+ 1) = yi(t) +
∑
j∈Ni

1

max{di, dj} (yj(t)− yi(t))

(23)
for i ∈ {1, . . . , n}.

2) Threshold Computation. Using the techniques introduced
in Section III and assuming that X ∼ N (0, yi(t)), each
node solves

T �
i (t)

def
= argmin

T≥0
Jn,k(T ) (24)

where Jn,k(T ) is given by (10).
If at time t the sensors use the thresholds {T �

i (t)}ni=1, the
decision variables ui(t) are computed as follows:

ui(t) = 1 (|xi| ≥ T �
i (t)). (25)

The instantaneous performance of this approximate scheme
is given by the following:

Jπ (x,u(t))
def
=

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑
i=1

x2
i (1− ui(t)) , if

n∑
i=1

ui(t) ≤ k

1
n

n∑
i=1

x2
i , if

n∑
i=1

ui(t) > k

(26)
where the notation π = C is used to denote that the sensors are
using a consensus-based scheme.

Fig. 5 (top) shows the empirical performance of the system
obtained by generating 100 independent sample paths (one for

each realization of the observation vector x
def
=(x1, . . . , xn)).

The mean and the standard deviation of the data JC(x,u(t))
are plotted. The underlying local communication graph G is
sampled from the ensemble of geometric graphs with connec-
tivity radius r =

√
log2 n/n, which is known to result in a

connected graph with high probability [31]. One key observation
here is that the mean of the sample paths converges to a value
below the performance of the optimal scheme J �

n,k. The reason
behind this is that the thresholds are adapted to the observed
data x, which is the same data used to compute the empirical
performance, resulting in a downward biased estimation of the
true optimal solution J �

n,k [32]. Another observation is the fact

1Any other averaging scheme would be equally applicable, but possibly
leading to different convergence rates.
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Fig. 5. Top figure shows the empirical performance of our scheme
based on average consensus for 100 sample paths JC(x,u(t)) as
a function of time t for a system with n = 100 sensors and channel
capacity k = 10. The figure in the bottom shows the corresponding total
number of transmitting sensors at a given time t.

that this strategy is conservative in terms of average number of
transmissions relative to the channel capacity. Fig. 5 (bottom)
shows that the average number of transmissions converges to 6.2,
which is approximately 38% less than the maximum available
capacity of k = 10. Moreover, the maximum number of simul-
taneous transmissions in the sample paths that are within the
standard deviation (shown in the shaded green region) is 8, from
which we conclude that the occurrence of collisions is effectively
mitigated while achieving empirical performance very close
to the theoretical optimal. We conjecture that this additional
gap observed between the maximum number of simultaneous
transmissions and the capacity is responsible for the robustness
observed in Fig. 4.

B. Top-K Strategy Based on Decentralized Quantile
Estimation

When local communication among sensors is available, noth-
ing prevents the sensors to coordinate and attempt to implement
the centralized top-k scheme outlined in Section III-B. There-
fore, one possibility consists of each sensor exchanging mes-
sages to compute a local estimate of thekth ordered statistics z(k)
as defined in (19) and use it as a threshold. Ideally, if the estimates
are perfect, only the sensors holding the measurements within
the top-k largest magnitudes will transmit. This strategy seeks
to maximally exploit the available communication resources to
achieve the best performance.

We will use a distributed subgradient method to estimate the
sample quantile corresponding to the kth ordered statistics. Let

zi
def
= |xi|, i ∈ {1, . . . , n} and the pth sample quantile be defined

as

θp
def
= inf

{
ξ | 1

n

n∑
i=1

1(zi ≤ ξ) ≥ p

}
. (27)

Proposition 1 (Relationship Between Sample Quantiles
and Ordered Statistics): Let {zi}ni=1 be a sequence of re-
alizations of the i.i.d. sequence of continuous random vari-
ables {Zi}ni=1 and its corresponding nonincreasing reordering
{z(i)}ni=1. Then

p ∈
(
n− k

n
,
n− k + 1

n

)
⇒ θp = z(k). (28)

Proof: The proof of this result relies on the fact that {zi}ni=1

are realizations of continuous random variables, and therefore
are distinct with probability 1. Setting p in the interval of (28)
guarantees that the minimum data point ξ such that

∑n
i=1 1(zi ≤

ξ) ≥ np holds is exactly z(k). �
Let wi(t) denote the estimate of z(k) for the ith sensor at tth

iteration and set wi(0)
def
= zi, i ∈ {1, . . . , n}. Let η(t) be a de-

terministic step-size sequence, which is chosen as η(t) = α/tτ ,
where α > 0 and τ ∈ (0.5, 1].

On the tth round of local communication, we perform the
following iteration:

wi(t+ 1) = wi(t) +
∑
j∈Ni

1

max{di, dj} (wj(t)− wi(t))

− η(t)si (zi, wi(t)) (29)

where

si (zi, wi(t))
def
=

{
1− p zi < wi(t)

−p zi ≥ wi(t).
(30)

If at time t the ith sensor uses its quantile estimate wi(t) as a
threshold, the decision variables ui(t) are computed as follows:

ui(t) = 1 (|xi| ≥ wi(t)). (31)

The instantaneous performance of this scheme is computed
according to (26) with π = Q denoting the fact that the sensors
are using the quantile-based scheme.

Theorem 3: Let p ∈ ((n− k)/n, (n− k + 1)/n). If the local
communication graph G is connected, then

lim
t→+∞wi(t) = z(k), i ∈ {1, . . . , n}. (32)

Proof: From [22, Sec. 1.3, pp. 7–9], we know that

θp = argmin
ξ∈R

n∑
i=1

ρp (zi − ξ) (33)

where

ρp(x)
def
=

{
(p− 1)x x < 0

px x ≥ 0.
(34)

Equation (33) is a nonsmooth convex optimization problem,
which can be distributed assuming that zi is the local variable
available only to sensor i. Therefore, the optimal solution can
be obtained by interleaving the subgradient method with an
average-consensus iteration [33]. Consider the iteration given
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by the following:

wi(t+ 1) =
∑
j∈Ni

aijwj(t)− η(t)si (zi, wi(t)) (35)

where aij are the averaging coefficients, and si(zi, wi(t)) is a
subgradient of ρpzi − ξ with respect to ξ at wi(t), e.g.,

si (zi, wi(t))
def
=

{
1− p zi < wi(t)

−p zi ≥ wi(t).
(36)

Let aij be the Metropolis averaging coefficients [34]. Under
the assumptions that the step-size η(t) is square-summable,
but not summable, and that the local communication graph G
is connected, (35) is guaranteed to converge to the optimal
solution [30], i.e., θp, which, from Proposition 1, is equal to
z(k) for p ∈ ((n− k)/n, (n− k + 1)/n).

One consequence of Theorem 3 is that for a large enough
delay in communication, the performance of the scheme based
on sample quantile estimation converges to the bounded interval,
which is specified by the following result.

Corollary 1: Let p ∈ ((n− k)/n, (n− k + 1)/n). Then ex-
ists a number M > 0 such that for t ≥ M ,

1

n

n∑
i=k+1

Z2
(i) ≤ JQ (X,U(t)) ≤ 1

n

n∑
i=k

Z2
(i) (37)

Proof: From Theorem 3, we have

lim
t→+∞wi(t) = z(k), i ∈ {1, . . . , n}. (38)

From the definition of limit, there exists a positive number

ε
def
= min

{
z(k−1) − z(k), z(k) − z(k+1)

}
(39)

and a sufficiently large number M such that∣∣wi(t)− z(k)
∣∣ < ε, t ≥ M. (40)

This implies that after M rounds of local communication,
the thresholds wi(t) will lie in (z(k+1), z(k−1)) for all i ∈
{1, . . . , n}. Furthermore, for t ≥ M , the number of transmis-
sions will be either k or k − 1. Therefore, either the top k or
k − 1 largest measurements will be sent to the remote estimator,
resulting in the following inequality:

1

n

n∑
i=k+1

z2(i) ≤ JQ (x,u(t)) ≤ 1

n

n∑
i=k

z2(i). (41)

Fig. 6 illustrates the performance of the distributed quantile
estimation scheme by computing the mean of 100 sample paths
JQ(x,u(t)). The underlying graph is the same used in the
simulation results in Section IV-A and the observations are stan-
dard Gaussian random variables. The chosen step-size sequence
is η(t) = 1/t0.51. Comparing Figs. 5 and 6, the asymptotic
performance of the quantile estimation scheme is superior to
the performance of the average consensus-based decentralized
scheme.

However, the convergence rate of the quantile estimation
scheme is considerably slower than the consensus-based system.
There is a simple, intuitive argument for these performance

Fig. 6. Top figure shows the empirical performance of our scheme
based on quantile estimation for 100 sample paths JQ(x,u(t)) as
a function of time t for a system with n = 100 sensors and channel
capacity k = 10. The figure in the bottom shows the corresponding total
number of transmitting sensors at a given time t.

differences: The quantile estimation scheme’s asymptotic per-
formance is essentially the centralized method’s performance.
The sensors must exchange much more information at this per-
formance level than what is needed to estimate the distribution’s
variance via average consensus. Moreover, the quantile estima-
tion scheme seeks to eliminate the occurrence of collisions in
the long run while at the same time approaching the channel’s
capacity. Notice that through quantile estimation, we operate
at approximately 95% of the channel capacity. The average
consensus-based strategy is conservative and works at 62% of
the capacity limit. Hence, the existence of a performance gap.

C. Fast Quantile Estimation Decentralized Scheme

In this section, we introduce a hybrid scheme with a faster
convergence rate and better or equal performance than both
schemes presented so far. We will only assume that the pdf of
the sensors’ observations is zero-mean and symmetric, but is
otherwise unknown. Let R be an integer such that when t < R,
we use the consensus-based method in Section IV-A, which
has a faster convergence rate; when t = R, each node uses the
threshold computed by solving the optimization problem in (24)
to initialize the quantile estimation scheme, i.e.,

wi(R) = T �
i (R), i ∈ {1, . . . , n}. (42)

After that, we use the quantile-based scheme as described in
Section IV-B, which converges to a lower asymptotic cost. The
instantaneous cost is given by JF (x,u(t)) defined as follows:

JF (x,u(t))
def
=

{JC (x,u(t)) , if t < R
JQ (x,u(t)), if t ≥ R.

(43)

The switching-time R is chosen as the time when all of
the local thresholds at the sensors T �

i (t) are close to the
threshold computed with access to entire dataset T̄ �. Since the
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convergence-time depends on the data, which is random, we
define the expected threshold agreement time.

Definition 3: Let δ > 0, the expected threshold agreement
time is defined as

R(δ)
def
=E

[
min{t ∈ Z≥0 | max

i∈{1,...,n}
|T �

i (t)− T̄ �| < δ }
]
(44)

where the expectation is taken over the sensors’ observations
X1, . . . , Xn.

Intuitively, the threshold agreement time R(δ) is a function of
the graph’s connectivity (through the averaging matrix A), the
cost function J , and the probability distribution of X1, . . . , Xn.

The next result provides a useful upper bound to the expected
threshold agreement time, which can be also used as a switching-
time.

Theorem 4: Let A be the averaging matrix used along
with the local communication graph G, the vector Y (0) =
vec(X2

1 , . . . , X
2
n), and the function τ : R → R be defined as

τ(σ2)
def
= arg min

T≥0
Jn,k(T ) (45)

assuming that Xi ∼ N (0, σ2), i ∈ {1, . . . , n}. Then the fol-
lowing upper bound to the expected threshold agreement time
holds:

R(δ) ≤ E

[
min

{
t ∈ Z≥0

∣∣∣ ∥∥∥(
At − 1

n
11T

)
Y (0)

∥∥∥
∞

<
δ

|τ ′ (n−11TY (0)) |
}]

(46)

where τ ′ is the derivative of (45) with respect to σ2 (i.e., the
sensitivity function), and the expectation is taken with respect
to X1, . . . , Xn.

Proof: Consider the function τ(σ2) defined in (45), which is
continuously differentiable and concave on (0,+∞) (cf. Lemma
6 in Appendix E), the following holds for all i ∈ {1, . . . , n}:

|T �
i (t)− T̄ �| = |τ (yi(t))− τ(ȳ)| ≤ |τ ′(ȳ)| · |yi(t)− ȳ|

(47)
where ȳ = n−1

∑
yi(0), and yi(t) is the ith sensor’s estimate

of ȳ at time t. Thus,

max
i∈{1,...,n}

|T �
i (t)− T̄ �| ≤ |τ ′(ȳ)| · ‖y(t)− 1ȳ‖∞

= |τ ′(ȳ)| ·
∥∥∥(

At − 1

n
11T

)
y(0)

∥∥∥
∞
. (48)

Let S(δ) and C(δ) be defined as

S(δ)
def
=

{
t ∈ Z≥0

∣∣ ∥∥∥(
At − 1

n
11T

)
y(0)

∥∥∥
∞

< δ/|τ ′(ȳ)|
}

(49)
and

C(δ)
def
=

{
t ∈ Z≥0

∣∣ max
i∈{1,...,n}

|T �
i (t)− T̄ �| < δ

}
. (50)

Notice that S(δ) ⊆ C(δ) ⇒ minC(δ) ≤ minS(δ). Taking
the expectation with respect to X1, . . . , Xn yields

R(δ) ≤ E [minS(δ)]
def
= R̄(δ). (51)

TABLE II
SWITCHING-TIME R̄n,k FOR DIFFERENT VALUES OF δ

For the graphs that we have been using in our numerical
results, we have computed switching-times based on the upper-
bound of Theorem 4. Table II contains the switching-times
R̄n,k corresponding to different values of δ for systems with
n sensors and channel capacity k. The underlying graphs G are
random Geometric graphs with n = 10100 and 1000 nodes and
are fixed2. The expectation in the upper-bound is approximated
using 1000 Monte-Carlo simulations, for which the mean and
its 95% confidence interval are provided.

D. Mistmatched Distributions and Illustrative Example

To broaden our schemes’ applicability, consider the case when
the distribution is not necessarily Gaussian. Still, we use a
Gaussian approximation, i.e., we perform the local threshold
design, assuming that the measurements are drawn from a Gaus-
sian distribution with unknown variance. In this “mismatched”
distribution scenario, we use consensus to estimate the variance
of the distribution. At each iteration, each sensor solves (13)
assuming the distribution is N (0, yi(t)). At a certain point
t = R, we initialize the quantile estimation scheme using (42).

The parameter δ used in the fast quantile estimation scheme
is chosen to be 10−1, which implies in a switching time R = 22.
Assuming the measurements are drawn from a Laplacian dis-
tribution, Xi ∼ L(0, 1), i ∈ {1, . . . , n}, we compare the per-
formance of the regular quantile estimation scheme with its
accelerated counterpart. The numerical results shown in Fig. 7
show that the fast quantile estimation scheme is approximately
two orders of magnitude faster, even when the design is done
based on mismatched distributions. The reason why the hybrid
scheme is so effective, is that the consensus scheme quickly
synchronizes the local estimates at the sensors to a threshold
close to the kth ordered statistics, accelerating the overall con-
vergence of the quantile-based scheme. This synchronization
also leads to smoother sample paths, whereas the sample paths
of the pure quantile estimation scheme display large oscillations
when different local estimates are approaching the kth ordered
statistics (cf. shaded regions in Fig. 7). Finally, since the quan-
tile estimation scheme is independent of the distributions, the
asymptotic performance is unaffected by the mismatch. That is
the reason why the hybrid scheme is able to achieve the desirable
features of both schemes.

V. CONCLUSION

In the first part of this article, we have studied the design
of threshold strategies for a remote estimation system over the

2All data and code discussed in this article is available at GitHub https://
github.com/mullervasconcelos/collision-quantile.git
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Fig. 7. Performance of the quantile estimation scheme and its accel-
erated counterpart. The observations are i.i.d. according to a Laplacian
distribution, Xi ∼ L(0, 1), i ∈ {1, . . . , n}. The number of sensors is
n = 100, and capacity is k = 10.

collision channel without local communication. We showed that
when the observations across sensors are i.i.d. and the pdf is
symmetric, there exists a unique optimal threshold for the NMSE
criterion. Our numerical results show that the optimal threshold
strategy has a performance reasonably close to a clairvoyant
centralized lower bound and is robust to moderate perturbations
on the symmetry assumptions.

In the second part of this article, we assume the measure-
ments are i.i.d. according to symmetric probability distribution
belonging to a parametric class with unknown parameters. Under
this partial distribution knowledge, local communication among
sensors enables distributed learning of the optimal thresholds.
We presented three schemes as follows:

1) A fast converging consensus-based design, where each
sensor estimates missing distribution parameters from
data and then solve a local optimization problem.

2) A distributed quantile estimation strategy that implements
the optimal centralized policy at the price of a slower
convergence rate.

3) A hybrid scheme with fast convergence and excellent
performance.

Many open questions stem from this work. One of them is
the characterization of the system robustness concerning per-
turbations of the probabilistic model. For example, we would
like to characterize the system’s performance loss when the
imperfect local parameter estimates are used instead of the
nominal values. Another important open question pertains to
the possibility of correlation among sensors’ observations and
properties of the objective function, existence, and uniqueness
of optimal solutions. More importantly, whether the use of
asymmetric threshold strategies would imply substantial gains
in performance. Finally, the convergence rate analysis of the
consensus and quantile-based schemes and their network scaling
properties are still open questions.

APPENDIX A

PROOF OF LEMMA 2

We begin by defining the event Ei,k
def
= {∑� �=i D� ≤ k − 1}.

Using the law of total expectation, the objective function in (4)
becomes

Jn,k(T ) =
1

n

n∑
i=1

[
E[(Xi − X̂i)

2
∣∣ Di = 0]P(Di = 0)

+E[(Xi − X̂i)
2
∣∣ Di = 1, |D| > k]P(Di = 1, |D| > k)

+E[(Xi − X̂i)
2
∣∣ Di = 1, |D| ≤ k]P(Di = 1, |D| ≤ k)

]
.

(52)

The independence of Di and {D�}� �=i yields

Jn,k(T ) =
1

n

n∑
i=1

[
E[(Xi − X̂i)

2
∣∣ Di = 0]P(Di = 0)

+E[(Xi − X̂i)
2
∣∣ Di = 1,Ec

i,k]P(Di = 1)P(Ec
i,k)

+E[(Xi − X̂i)
2
∣∣ Di = 1,Ei,k]P(Di = 1)P(Ei,k)

]
. (53)

Substituting (6) in (53), the cost function becomes

Jn,k(T )

=
1

n

n∑
i=1

[
E

[
X2

i

]−E
[
X2

i 1 (Di = 1)
]
P(Ei,k)

]
. (54)

Since {Xi}ni=1 are i.i.d., after some algebra we have

Jn,k(T ) = E[X2]−E[X21(|X| ≥ T )]Fn,k(T ). (55)

APPENDIX B

PROOF OF THEOREM 1

From [29],
the derivative of Fn,k(T ) is

F ′
n,k(T ) = 2 k

(
n− 1

k

)
q(T )n−1−k (1− q(T ))k−1 fX(T ).

(56)
We shall show that there is a uniqueT � such that the derivative

J ′
n,k(T ) is zero for T > 0, where

J ′
n,k(T )

= 2T 2fX(T )Fn,k(T )−E
[
X21(|X| ≥ T )

]
F ′
n,k(T ). (57)

Due to the fact that fX(T ) > 0 for T > 0, (56) implies that
F ′
n,k(T ) > 0 for T > 0. So we have that

J ′
n,k(T )

F ′
n,k(T )

=

[
2T 2fX(T )Fn,k(T )

F ′
n,k(T )

−E
[
X21(|X| ≥ T )

]]
︸ ︷︷ ︸

def
= h(T )

.

(58)
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Incorporating (11) and (56) into h(T ) yields

h(T ) = T 2q(T )

k−1∑
j=0

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1

−E
[
X21(|X| ≥ T )

]
. (59)

Since q(T ) ∈ (0, 1) is strictly increasing for T > 0, 1/(1−
q(T )) ∈ (0,∞) is also strictly increasing for T > 0. The prod-
uct of two positive and strictly increasing functions is a posi-
tive strictly increasing function, which implies that q(T )/(1−
q(T )) ∈ (0,+∞) is a strictly increasing function.

Since k − j − 1 ≥ 0 for j ∈ {0, . . . , k − 1}, we obtain that
[q(T )/(1− q(T ))]k−j−1 ∈ (0,+∞) is a nondecreasing func-
tion. The sum of nondecreasing functions is a non-decreasing
function, which implies that

k−1∑
j=0

[
(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1
]

(60)

is a positive nondecreasing function. Using the fact that the prod-
uct of a positive strictly increasing and a positive nondecreasing
function is a strictly increasing function, we get

T 2q(T )
k−1∑
j=0

[
(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1
]
(61)

which is a positive strictly increasing function.
Combining with the fact that −E[X21(|X| ≥ T )] is strictly

increasing continuous function for T > 0, we conclude h(T ) is
a strictly increasing continuous function of T for T > 0. When
T → 0+, we haveE[X21(|X| ≥ T )] > 0 and q(T ) → 0, which
implies infT h(T ) = limT→0+ h(T ) < 0. When T → +∞, we
have E[X21(|X| ≥ T )] → 0 and q(T ) → 1, which implies
supT h(T ) = limT→+∞ h(T ) > 0.

Therefore, there exists only one T � ∈ (0,+∞) such that
h(T �) = 0. Since fn,k(T ) > 0 and J ′

n,k(T ) = fn,k(T )h(T ),
there is a unique T � that minimizes Jn,k(T ) for T ∈ (0,+∞).
Combining with the fact that Jn,k(T ) is a continuous function,
T � is the optimal threshold.

APPENDIX C

PROOF OF LEMMA 3

Recall that h(T ) in (59) is a strictly increasing continuous
function of T , establishing the inequality T � > Tc is equivalent

to showing that h(Tc) < h(T �) = 0, where Tc
def
= q−11 − k/n.

Using (59) yields

h (Tc)

=
T 2
c

n

k−1∑
j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

−E
[
X21(|X| ≥ Tc)

]
(62)

<
T 2
c

n

k−1∑
j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

− kT 2
c

n
≤ 0 (63)

where the first inequality follows from

E
[
X21(|X| ≥ Tc)

]
=

∫ +∞

Tc

x2fZ(x)dx (64)

> T 2
c (1− FZ(Tc)) =

kT 2
c

n
(65)

and the last inequality follows from

k−1∑
j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

≤ k. (66)

APPENDIX D

PROOF OF LEMMA 4

Lemma 5 (Chernoff Bound [35]): Let D1, . . . , Dn be in-
dependent Bernoulli random variables such that P(Di = 1) =
1− qi. Let Sn =

∑n
i=1 Di and μ = E[Sn]. Then the following

inequality holds: For δ > 0

P (Sn ≥ (1 + δ)μ) ≤
(

eδ

(1 + δ)(1+δ)

)μ

. (67)

We begin to prove Lemma 4. Since {Di} is an i.i.d. sequence
of Bernoulli random variables with probability P(Di = 1) =
1− q(T ),we have μ = (n− 1)(1− q(T )). Let δ = k

μ − 1, and
notice that

δ > 0 ⇔ q(T ) > 1− k/(n− 1). (68)

Then, the following holds:

Fn,k(T ) = 1−P

(
n−1∑
i=1

Di ≥ k

)
(a)

≥ 1−
(

eδ

(1 + δ)(1+δ)

)μ

(69)
where (a) follows from Lemma 5.

Let d > 0. We would like to find T̄ such that Fn,k(T ) ≥ 1−
10−d, for T ≥ T̄ . Therefore, we would like to solve(

eδ

(1 + δ)(1+δ)

)μ

= 10−d (70)

which is equivalent to finding a zero of gn,k,d(q) defined in (16).
We will show that gn,k,d(q) always admits a unique zero in the
interval (1− k/(n− 1), 1].

Since gn,k,d(q) is differentiable, we have

g′n,k,d(q) = (n− 1)− k

1− q
< 0 (71)

which means that gn,k,d(q) is strictly decreasing on the in-
terval (1− k/(n− 1), 1). Moreover, when q → 1− k/(n−
1), we have gn,k,d(q) → d ln 10 > 0. When q → 1, we have
gn,k,d(q) → −∞. Thus, since gn,k,d(q) is continuous and
strictly decreasing on (1− k/(n− 1), 1), there is a unique zero

ζ in the interval (1− k/(n− 1), 1]. Let T̄
def
= q−1(ζ).

APPENDIX E

Lemma 6: Assuming that X ∼ N (0, σ2), define the function
τ : R≥0 → R as in (45). The function τ is concave. More
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specifically: There exists a constant c > 0 such that

τ(σ2) = c
√
2σ2. (72)

Proof: Recalling that τ(σ2) satisfies h(τ(σ2)) = 0, where h
is given by (59). Define the function r : R≥0 → R as

r(x) = x2v1(x)
k−1∑
j=0

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
v1(x)

1− v1(x)

)k−j−1

− v2(x) (73)

where

v1(x)
def
=

2√
π

∫ x

0

e−u2

du and v2(x)
def
=

2√
π

∫ +∞

x

u2e−u2

du.

(74)
We can show that r(x) is a strictly increasing continuous

function of x and there exists a unique constant c > 0 such that
r(c) = 0. Moreover, for X ∼ N (0, σ2), we have

r

(
τ(σ2)√
2σ2

)
=

h(τ(σ2))

2σ2
= 0. (75)

Since there is a unique zero c such that r(c) = 0, we have
τ(σ2) = c

√
2σ2.
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[30] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953–976, May 2018.

[31] M. Penrose, Random Geometric Graphs. London, U.K.: Oxford Univ.
Press, 2003.

[32] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic
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