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Observation-Driven Scheduling for Remote
Estimation of Two Gaussian Random Variables
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Abstract—Joint estimation and scheduling for sensor
networks is considered in a system formed by two sen-
sors, a scheduler, and a remote estimator. Each sensor
observes distinct Gaussian random variables, which may
be correlated. This system can be analyzed as a team
decision problem with two agents: the scheduler and the re-
mote estimator. The scheduler observes the output of both
sensors and chooses which of the two is revealed to the
remote estimator. The goal is to jointly design scheduling
and estimation policies that minimize a mean-squared es-
timation error criterion. The person-by-person optimality of
a policy pair called “max-scheduling/mean-estimation” is
established, where the measurement with the largest abso-
lute value is revealed to the estimator, which uses a corre-
sponding conditional mean operator. This result is obtained
for independent Gaussian random variables, and correlated
Gaussian random variables with symmetric variances. Fi-
nally, the joint design of scheduling and linear estimation
policies for any two Gaussian random variables with an
arbitrary correlation structure is considered. In this case,
the optimization problem is recast as a difference-of-convex
program, and locally optimal solutions can be found using
a simple numerical procedure.

Index Terms—Decision theory, estimation, multia-
gent systems, networked control systems, optimization,
quantization.

I. INTRODUCTION

THE MULTIPLE components of cyber-physical systems
are often interconnected by shared communication links

of limited bandwidth [1]. One way to model this bandwidth
constraint is to assume that, at any time instant, a single packet
can be reliably transmitted over a communication link to its des-
tination [2]. Therefore, the system designer must come up with
rules/algorithms that allocate shared communication resources
among multiple transmitting nodes. This paper introduces a new
class of remote estimation problems, where the communication
resources are allocated dynamically based on the observations at
the sensors, rather than based purely on the statistical description
of the information sources.
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Fig. 1. Block diagram of the equivalent observation-driven sensor
scheduling problem.

The basic framework considered here is shown in Fig. 1.
Two sensors, making possibly correlated observations, report
their measurements to a scheduler. The role of the scheduler
is to select one of the observations and transmit it to a remote
estimator. Finally, the remote estimator forms estimates of both
measurements. Our goal is to jointly design scheduling and
estimation policies that minimize a mean-squared estimation
error criterion. Alternatively, this problem can be understood
as one of dimensionality reduction, where an encoder–decoder
pair is designed to minimize the expected distortion between
the original and reconstructed vectors, with the constraint that a
scalar (versus a vector) is transmitted or stored [3].

A. Motivation

One motivating application for the framework considered
herein is in systems known as wireless body area networks [4].
In such systems, multiple biometric sensors are deployed on a
person and report the collected measurements to an intermediate
node, e.g., a mobile phone (scheduler), which, in turn, sends the
data to a remote healthcare provider (estimator) over a wireless
network. Due to the constraint imposed by the network, at a
given time, the mobile phone can only send information coming
from a single sensor at a time. The overall goal of the system is
to enable real-time monitoring such that the remote healthcare
provider can assist its patients with minimal delay.

Our framework can also be used to model communication
constraints in other research fields such as organizational eco-
nomics (see, e.g., [5]). Consider, for example, a firm where a
manager (scheduler) has access to accurate information about
different divisions of the company and reports to the com-
pany’s chief executive officer (CEO) (estimator). Due to the
CEO’s limited and costly time, the manager cannot communi-
cate everything and has to judiciously choose what to report
(communication constraint). The CEO must then make a de-
cision based on its belief (estimate) of the overall state of the
firm.
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B. Related Literature

The problem of selecting a subset among a larger set of sen-
sors with the purpose of transmission over a bandwidth con-
strained network and subsequent estimation is generally referred
to as sensor scheduling. With applications spanning many areas
in engineering such as networked control, sensor networks, tar-
get tracking, and remote estimation [6]–[8], sensor scheduling
has had a long and rich history. In general, sensor scheduling is
a hard combinatorial optimization problem [9]. However, this
computational complexity may be circumvented by suboptimal
pruning of decision trees [10] or by using convex relaxations
[11]. In certain cases, it is possible to show that the solution
to these relaxed problems yields optimal scheduling schemes,
which are periodic and therefore admit simple implementations
[12]–[14]. In a related line of work, a framework for sensor se-
lection with a cost function augmented with a sparsity promoting
term is introduced. This framework has the goal of trading-off
complexity versus performance [15].

Sending more important packets at the expense of others can
greatly improve the performance of networked control systems
[16]. Indeed, [16] was the first work to compare static (open-
loop) versus dynamic (closed-loop) scheduling policies, where
the sensing node with the maximum error is given priority to
transmit over others. However, unlike [16], the results herein
arise as person-by-person optimal solutions to an optimization
problem, whereas in [16], the scheduling policy is specified a
priori by the system designer. The problem of sequential trans-
mission over a shared channel for discrete Markov sources was
studied in [17]. Even though their motivation and problem for-
mulation is similar to ours, their assumptions preclude signal-
ing through decision variables. Moreover, they do not provide
structural results on the optimal scheduling policies. The results
obtained herein hold for a one-shot problem, but unlike [17],
we do not avoid signaling, which is a central feature of our
framework.

A sensor scheduling problem of multiple mutually indepen-
dent linear time-invariant systems with an average cost criterion
was considered in [18], where event-based policies must be de-
signed such that only the most informative sensor is allowed
to transmit at a time. Due to the inherent complexity of the
problem, the optimal solution is difficult to obtain. A greedy
scheduling scheme is then used to provide a quantifiable perfor-
mance gap between the optimal solution and other suboptimal
scheduling schemes. Unlike their work, we obtain a scheduling
policy with a specific structure, which holds for independent and
symmetrically correlated Gaussian observations. A more real-
istic scheduling problem for dynamical systems than the one
addressed herein was studied in [19]; however, this generality
comes at the expense of a lack of structural results, as observed in
[19]. In order to obtain structural results, further simplifying as-
sumptions are incorporated in [19]. Indeed, our work reinforces
this point by showing that even in the one-shot Gaussian case,
the resulting joint optimization problem is intractable. However,
we are able to provide some additional insight on the design of
scheduling and estimation (in the one-shot case) based on the
concept of person-by-person optimality, which is not considered
in [19].

Our approach to the scheduling problem is aligned with the
work of Xia et al. [20], where the decision is made based on
the realizations of the measurements themselves. The idea is to
design and exploit event-triggers [21]–[23] for the transmission
of one of the variables over the other, which allows for implicit
communication via signaling [24]. In a way, the problem we
address here is an observation selection problem [25], and the
techniques we use are reminiscent of quantization in task-driven
sensing, where the observation space is partitioned in regions
where certain decisions are made [26]. Despite the simple de-
scription of our framework, the resulting optimization problem
is nontrivial. The fundamental challenge is that the joint design
of scheduling and estimation policies is entangled by signal-
ing, and the transmitted variable serves as side information for
estimation of the nontransmitted one. Since the action of the
scheduler directly affects what the estimator observes, this is a
team-decision problem with a nonclassical information struc-
ture [27]. Such problems are known to be NP-hard in general,
and systematic methods for their solution are still unknown.
Typically, this difficulty is either overlooked, or simplifying as-
sumptions are made leading to suboptimal designs.

Finally, the problem studied in this paper is closely related
to the problem of estimating random variables observed by in-
dividual sensors, which independently decide to transmit over
a collision channel [2]. Here, the inclusion of a scheduler has
the goal of completely avoiding collisions. In a sense, the prob-
lem considered here is a “centralized” version of the problem
in [2] and can be used to lower bound the performance of the
decentralized system.

C. Contributions and Organization

The main contributions of this paper are the following.
1) We establish the person-by-person optimality of the max-

scheduling/mean-estimation policy pair for sensors mak-
ing independent Gaussian observations. One remarkable
feature of this result is that the structure of the scheduling
policy is completely independent of the variances of the
observations. The mean-estimation policy, in this case, is
a piecewise linear function of the received packet at the
remote estimator.

2) We establish the person-by-person optimality of the max-
scheduling/soft-thresholding estimation policy pair in the
case when the observations are correlated but have equal
variances. In this case, the soft-thresholding policy is a
nonlinear function of the received packet at the remote
estimator. The proof of this result depends on certain
symmetry and monotonicity properties related to the soft-
thresholding nonlinear estimator induced by the max-
scheduling policy.

3) For two Gaussian random variables with an arbitrary cor-
relation structure, we provide a numerical procedure that
finds locally optimal solutions to the nonconvex opti-
mization problem obtained when the estimators are con-
strained to the class of piecewise linear functions.

4) Finally, we extend the person-by-person optimality result
to account for any number of sensors observing indepen-
dent zero-mean Gaussian sources.
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Preliminary versions of Theorems 1 and 2 presented here
have appeared previously in [28], where certain key technical
aspects of the proofs were either conjectured or omitted. The
proofs of the results reported here are detailed and precise.
Additionally, we provide several new results, which have not
appeared elsewhere in Theorems 3–7.

D. Notation

We adopt the following notation: random variables and ran-
dom vectors are represented using upper case letters, such as
X . Realizations of random variables and random vectors are
represented by the corresponding lower case letter, such as x.
The probability density function (pdf) of a continuous random
variable X , provided that it is well defined, is denoted by fX .
Functions and functionals are denoted using calligraphic letters
such as F . We use N (m,σ2) to represent the Gaussian prob-
ability distribution of mean m and variance σ2 , respectively.
The n-dimensional Euclidean space is denoted by Rn . Sets are
represented in blackboard bold font, such as A. The probability
of an event E is denoted by P(E); the expectation of a random
variable Z is denoted by E[Z]. If two random variables X and
Y are independent, this relationship is denoted by X ⊥⊥ Y . The
indicator function of a statement S is defined as follows:

1(S) def=

{
1, if S is true

0, otherwise.
(1)

II. PROBLEM FORMULATION

Consider the system in Fig. 1 comprised of two sensors la-
beled S1 and S2 . Each sensor observes a Gaussian random vari-
able with known mean and variance. Without loss of generality,
we assume that sensor Si observes Xi , where

Xi ∼ N (0, σ2
i ), i ∈ {1, 2}. (2)

The correlation coefficient between X1 and X2 is defined as

ρ
def=

E[X1X2 ]
σ1 · σ2

. (3)

The observations X1 and X2 must be communicated to a re-
mote estimator over a communication link, where a single packet
is transmitted to the remote estimator at a time. A scheduler de-
cides which of the random variables is chosen to be transmitted
over the channel. The scheduler’s decision variable, denoted by
U , is computed according to a scheduling policy, which is a
measurable function U : R2 → {1, 2} such that

U = U(X1 ,X2). (4)

The set of all admissible scheduling policies is denoted by U .
The scheduler’s decision U determines what the remote estima-
tor observes as follows:

Y = (U,XU ). (5)

The vector Y belongs to the set Y
def= {1, 2} × R.

Remark 1: Notice that the scheduler effectively sends a
packet containing the index U in addition to the real number
XU . The reason behind this assumption is to let the estimator

know the origin of the packet before forming its estimates. The
presence of an identification number on a packet is a standard
assumption in data networks [29].

Upon observing Y , the remote estimator forms estimates of
the observations at both sensors X1 and X2 , denoted by X̂1 and
X̂2 , respectively. This is done according to an estimation policy
E : Y → R2 as follows:(

X̂1 , X̂2
)

= E(Y ). (6)

The set of all admissible estimation policies is denoted by E.
Our goal is to solve the following optimization problem.

Problem 1: Given the variances σ2
1 , σ2

2 > 0 and the cor-
relation coefficient ρ ∈ [0, 1), find a scheduling and estimation
policy pair (U , E) ∈ U × E that jointly minimizes the following
cost:

J (U , E) def= E
[(

X1 − X̂1
)2 +

(
X2 − X̂2

)2
]
. (7)

A. Notions of Optimality

1) Global Optimality: A pair of scheduling and estimation
strategies (U� , E�) ∈ U × E is globally optimal if

J (U� , E�) ≤ J (U , E), (U , E) ∈ U × E. (8)

2) Person-by-Person Optimality: A pair of scheduling and
estimation strategies (U� , E�) ∈ U × E is person-by-person
optimal if

J (U� , E�) ≤ J (U , E�), U ∈ U (9)

J (U� , E�) ≤ J (U� , E), E ∈ E. (10)

Remark 2: The concept of person-by-person optimal solu-
tion is weaker than the notion of global optimality [27]. How-
ever, there are no known systematic approaches to solve Problem
1 for a globally optimal solution. Even the characterization of
person-by-person optimal solutions in closed form for Problem
1 is a challenging task and must be done on a case-by-case basis.

III. MAIN RESULTS

The main contribution of this work is to establish the person-
by-person optimality of several pairs of scheduling and estima-
tion policies for Problem 1 for different structures of correlation
between the observations X1 and X2 . Before formally stating
the results, we first define the max-scheduling, mean-estimation,
and soft-thresholding estimation policies.

Definition 1 (Max-scheduling policy): Let x ∈ R2 . The
max-scheduling policy is defined as

Umax(x) def=

{
1, if |x1 | ≥ |x2 |
2, otherwise.

(11)

Definition 2 (Mean-estimation policy): Let ξ ∈ R and i ∈
{1, 2}. The mean-estimation policy is defined as

Emean(i, ξ) =

{
[ξ 0]T, if i = 1

[0 ξ]T, if i = 2.
(12)

The reason why the policy above is called mean-estimation is
that the estimator outputs the mean of the unobserved random
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variable as its estimate. In other words, the side information
provided by observing Xi = ξ is irrelevant for estimating Xj ,
i �= j. In this case, since the random variables X1 and X2 are
assumed to be zero-mean, the mean-estimation policy takes the
form above.

Definition 3 (Soft-thresholding estimation policy): Let
ξ ∈ R and i ∈ {1, 2}. The soft-thresholding estimation policy
is defined as

E soft(i, ξ) =

{
[ξ η(ξ)]T, if i = 1

[η(ξ) ξ]T, if i = 2
(13)

where η(ξ) is a nonlinear soft-thresholding function with pa-
rameters σ2 > 0 and ρ ∈ [0, 1) defined as

η(ξ) def=

∫ |ξ |
−|ξ | τ exp

(
− (τ−ρξ)2

2σ 2 (1−ρ2 )

)
dτ∫ |ξ |

−|ξ | exp
(
− (τ−ρξ)2

2σ 2 (1−ρ2 )

)
dτ

. (14)

Our main results are stated in the following theorems.
Theorem 1: If ρ = 0, the policy pair (Umax , Emean) is a

person-by-person optimal solution for the cost J (U , E) in (7).
Theorem 2: If ρ ∈ [0, 1) and σ2

1 = σ2
2 , the policy pair

(Umax , E soft) is a person-by-person optimal solution for the
cost J (U , E) in (7).

Remark 3: Theorems 1 and 2 present candidates for glob-
ally optimal scheduling and estimation policy pairs for Problem
1. We conjecture that these pairs are globally optimal. An al-
ternative way to interpret this result is from the perspective
from game theory, as Theorems 1 and 2 say that the pairs
(Umax , Emean) and (Umax , E soft) constitute Nash-equilibrium
solutions for a noncooperative game played by the scheduler
and the estimator [30].

IV. INDEPENDENT OBSERVATIONS

We start with the simpler case, where the sensors observe
independent random variables. Let X1 and X2 be uncorrelated
scalar Gaussian random variables, i.e., the correlation coefficient
ρ = 0. We will now state two necessary optimality conditions
reminiscent of quantization theory [31]. The first property per-
tains to the optimality of an optimal estimation policy for an
arbitrarily fixed scheduling policy U ∈ U .

Lemma 1 (Optimal estimator): For a fixed scheduling pol-
icy U ∈ U , the estimation policy that minimizes the mean-
squared error cost in (7) is the following:

E�
U (y) = E [X | Y = y] . (15)

Proof citation: This is the classical nonlinear filtering result.
Its proof is found in many texts, such as [32, p. 143]. �

Remark 4: There are two noteworthy facts about Lemma
1: 1) the optimal estimation policy is always a function of the
scheduling policy. This coupling leads to the lack of convexity
of Problem 1; and 2) the scheduling policy creates a coupling
between the random variables X1 and X2 even when they are
independent, which means that no matter what is received by
the remote estimator, it should be used as side information for
forming the optimal estimates X̂1 and X̂2 .

Lemma 2 (Identity structure): The search for optimal esti-
mation policies can be constrained to the set of policies E that
satisfy the following identity property:

E(1, ξ) =

[
ξ

η2(ξ)

]
and E(2, ξ) =

[
η1(ξ)

ξ

]
(16)

where ξ ∈ R and ηi : R → R, i ∈ {1, 2}.
Proof: Let i, j ∈ {1, 2} such that i �= j and ξ ∈ R; then,

for any fixed scheduling policy U ∈ U , the event {Y = (i, ξ)}
is identical to the event {U = i,Xi = ξ}. Therefore, we have

E[Xi | Y = (i, ξ)] = ξ. (17)

Similarly, we have

E[Xj | Y = (i, ξ)] =
∫

R
xjfXj |U =i,Xi =ξ (xj )dxj (18)

def= ηj (ξ). (19)

�
For the remainder of this paper, every admissible estimator

E ∈ E satisfies the identity property in Lemma 2 and is com-
pletely specified by representation functions denoted by η1 and
η2 . This fact will be used to establish a necessary optimality con-
dition for the optimal scheduling policy, for a given estimation
policy E ∈ E.

Lemma 3 (Generalized nearest neighbor condition): For
a fixed estimation policy E ∈ E parameterized by representation
functions η1 and η2 , the following scheduling policy minimizes
the cost in (7):

U�
E (x) =

{
1, if |x1 − η1(x2)| ≥ |x2 − η2(x1)|
2, otherwise.

(20)

Proof: Using the law of total expectation, we write

J (U , E) = E
[
‖X − X̂‖2 | U = 1

]
P(U = 1)

+ E
[
‖X − X̂‖2 | U = 2

]
P(U = 2). (21)

Due to the identity structure in Lemma 2, the following holds:

J (U , E) =
∫

R2
(x2 − η2(x1))21(U(x) = 1)fX (x)dx

+
∫

R2
(x1 − η1(x2))

2 1 (U(x) = 2) fX (x)dx.

(22)

For fixed representation functions η1 and η2 , we can construct a
scheduling policy that minimizes the expression above. Let Qi

be defined as

Qi
def= {x ∈ R2 | U(x) = i}, i ∈ {1, 2}. (23)

As a function of the sets Q1 and Q2 , the cost in (22) becomes

J (U , E) =
∫

Q1

(x2 − η2(x1))2fX (x)dx

+
∫

Q2

(x1 − η1(x2))2fX (x)dx. (24)

Authorized licensed use limited to: University of Southern California. Downloaded on March 20,2020 at 01:36:31 UTC from IEEE Xplore.  Restrictions apply. 



236 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020

Since Q1 and Q2 form a partition of R2 , we can equivalently
write (24) as

J (U , E) =
∫

Q1

[
(x2 − η2(x1))2 − (x1 − η1(x2))2]fX (x)dx

+
∫

R
(x1 − η1(x2))2fX (x)dx. (25)

Finally, notice that in order to minimize (25), we assign to
Q1 every point x ∈ R2 such that the argument of the integral
is nonpositive, i.e., we assign to Q1 every point x ∈ R2 that
satisfies the following inequality:

(x2 − η2(x1))2 ≤ (x1 − η1(x2))2 . (26)

The remaining points are assigned to Q2 . This minimizing
choice is unique up to sets of measure zero. �

Remark 5: Notice that Lemma 3 is completely independent
of the joint pdf fX .

We are now equipped to prove Theorem 1.
Proof of Theorem 1: Let the estimation policy be E =

Emean . The associated representation functions are given by

ηi(ξ) = 0, ξ ∈ R, i ∈ {1, 2}. (27)

From Lemma 3, an optimal scheduling policy for Emean is

U�
Em e a n (x) =

{
1, if |x1 | ≥ |x2 |
2, otherwise

(28)

which is equal to the max-scheduling policy Umax .
Conversely, assume that the scheduling policy U = Umax .

Lemma 1 implies that the optimal estimator is given by

E�
Um a x (i, ξ) = E[X | Y = (i, ξ)] (29)

where i ∈ {1, 2} and ξ ∈ R.
If i = 1, then

E[X | Y = (1, ξ)] =

[
ξ

η2(ξ)

]
(30)

where

η2(ξ) =

∫
R x21 (Umax(ξ, x2) = 1) fX 2 |X 1 =ξ (x2)dx2∫

R 1 (Umax(ξ, x2) = 1) fX 2 |X 1 =ξ (x2)dx2
. (31)

Since ρ = 0, then the conditional pdf is equal to

fX 2 |X 1 =ξ (x2) =
1√
2πσ2

2

exp
(
− x2

2

2σ2
2

)
. (32)

Therefore, the representation function η2 can be explicitly com-
puted as

η2(ξ) =

∫ |ξ |
−|ξ | x2

1√
2πσ 2

2

exp
(
− x2

2
2σ 2

2

)
dx2∫ |ξ |

−|ξ |
1√

2πσ 2
2

exp
(
− x2

2
2σ 2

2

)
dx2

. (33)

Due to the even symmetry of the marginal Gaussian density
around zero, we have

η2(ξ) = 0, ξ ∈ R. (34)

Fig. 2. Performance of the max-scheduling and mean-estimation policy
computed as a function of the variance σ2

1 , while keeping σ2
2 = 1 fixed.

The dashed curve corresponds to the performance of the open-loop
scheduling policy, where the variable with the largest variance is always
transmitted to the remote estimator.

Repeating the same steps for i = 2 leads to

η1(ξ) = 0, ξ ∈ R. (35)

Therefore, we have

E�
Um a x = Emean . (36)

�

A. Illustrative Example

For two independent Gaussian observations X1 ∼ N (0, σ2
1 )

and X2 ∼ N (0, σ2
2 ), the performance of the person-by-person

optimal pair of policies (Umax , Emean) is given by the following
formula:

J (Umax , Emean) = E
[
min{X2

1 ,X2
2 }

]
. (37)

Fig. 2 shows the performance of this pair of policies as a
function of σ2

1 while keeping σ2
2 = 1.

We compare the performance of the pair of policies
(Umax , Emean) with an “open-loop” scheduling scheme, where
the variable with the largest variance is transmitted, i.e.,

Uopen(x) def= arg max
i∈{1,2}

σ2
i . (38)

The optimal estimator for the policy Uopen defined above is

E�
Uo p e n = Emean . (39)

Therefore, the performance of the open-loop scheme is given
by the following expression:

J (Uopen , Emean) = min{σ2
1 , σ2

2}. (40)
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Fig. 2 shows the performance of the two schemes and the
improvement achieved by the max-scheduling policy, which
schedules the transmissions among sensors dynamically.

V. SYMMETRIC CORRELATED CASE

The two properties that enabled us with a simple proof for
Theorem 1 were: 1) the fact that the two random variables X1
and X2 are independent; and 2) the fact that the conditional
Gaussian pdfs are symmetric about the mean (which is zero in
this case). In the correlated case, these two properties no longer
hold.

We proceed by exploring the case when the variances are
equal, but the observations are correlated, i.e., the covariance
matrix is

Σ = σ2

[
1 ρ

ρ 1

]
. (41)

In this case, for a fixed ξ ∈ R, the conditional density of Xi |
Xj = ξ is

N
(
ρξ, σ2(1 − ρ2)

)
. (42)

Let us define the optimal nonlinear representation functions
induced by the max-scheduling policy when the observations
are symmetrically correlated. Let i, j ∈ {1, 2} such that i �= j
and ξ ∈ R. Then, under the max-scheduling policy, we have

E [Xi | Y = (j, ξ)] =

∫ |ξ |
−|ξ | xifXi |Xj =ξ (xi)dxi∫ |ξ |
−|ξ | fXi |Xj =ξ (xi)dxi

. (43)

Notice that, due to the symmetric variances, the two nonlin-
ear estimates corresponding to i = 1, 2 given by the expression
above are equal. This leads to the nonlinear soft-thresholding
representation function η(ξ) defined in (14). The representation
function η(ξ) is shown in Fig. 3. It is straightforward to show
that η has odd symmetry. We state this fact without proof as a
lemma.

Lemma 4 (Odd symmetry of the nonlinear soft-
thresholding representation function): The function η defined
in (14) satisfies

η(−ξ) = −η(ξ), ξ ∈ R. (44)

In the proof of Theorem 2, we will make extensive use of two
auxiliary functions, P and T .

Definition 4 (Auxiliary functions): Let P and T be defined
as follows:

P(ξ) def= ξ − η(ξ), ξ ∈ R (45)

and

T (ξ) def= ξ + η(ξ), ξ ∈ R. (46)

Lemma 5 (Monotonicity of P and T ): Let ξ1 , ξ2 ∈ R. For
all ξ1 and ξ2 such that ξ1 ≤ ξ2 , we have

P(ξ1) ≤ P(ξ2) (47)

T (ξ1) ≤ T (ξ2). (48)

Proof: See Appendix A. �

Fig. 3. Nonlinear soft-thresholding estimator induced by the max-
scheduling policy for symmetric Gaussian sources. In this figure, the
variance is normalized to 1.

The fact that P and T satisfy this monotonicity property is of
paramount importance in the proof of Theorem 2. We are now
equipped to prove Theorem 2.

Proof of Theorem 2: Assuming that U = Umax , due to the
symmetry of the pdf, Lemma 2 implies that the optimal estimator
E�
Um a x is given by

E�
Um a x (1, ξ) =

[
ξ

η(ξ)

]
and E�

Um a x (2, ξ) =

[
η(ξ)

ξ

]
(49)

where the representation function η(ξ) is defined in (14). There-
fore, we have

E�
Um a x = E soft . (50)

We will show that this choice of estimation policy implies, via
Lemma 3, the optimality of the max-scheduling policy. Define
the function H : R2 → R such that

H(x) def=
(
x2 − η(x1))2 − (x1 − η(x2)

)2
. (51)

The above function can be rewritten using the two auxiliary
functions P and T from (45) and (46) as follows:

H(x) = [T (x2) − T (x1)] × [P(x2) + P(x1)] . (52)

Lemma 3 implies the optimal scheduling policy given by

U�
E�
Um a x

(x) =

{
1, if H(x) ≤ 0

2, otherwise.
(53)

Partition R2 into eight subsets {A1 , . . . , A8} depicted in Fig. 4.
Let x ∈ A1 , which is characterized by x1 ≥ 0, x2 ≥ 0 and
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Fig. 4. Partition of the observation space used in the proof of Theo-
rem 2.

x1 ≤ x2 . Lemma 5 implies that

P(xi) ≥ P(0) = 0, i ∈ {1, 2}. (54)

Therefore, we have

P(x1) + P(x2) ≥ 0. (55)

Since x1 ≤ x2 , Lemma 5 also implies that

T (x2) − T (x1) ≥ 0. (56)

Together, (55) and (56) imply

H(x) ≥ 0. (57)

Similarly, if x ∈ A2 , we have

P(x1) + P(x2) ≥ 0. (58)

On the other hand, we have

T (x2) − T (x1) ≤ 0. (59)

Therefore, we have

H(x) ≤ 0. (60)

Proceeding in a similar way, making use of Lemmas 4 and
5, we can cover all the eight regions. For each of the eight
regions, all the points either satisfy H(x) ≥ 0 or H(x) ≤ 0.
Moreover, if x ∈ A1 ∪ A4 ∪ A5 ∪ A8 , then H(x) ≥ 0, and if
x ∈ A2 ∪ A3 ∪ A6 ∪ A7 , then H(x) ≤ 0. Thus, we have

U�
E s o f t = Umax . (61)

�
Remark 6: There exists a connection between Theorems 1

and 2, although neither one implies the other in general. When
ρ = 0 in Theorem 2, the result follows immediately from The-
orem 1. Similarly, when σ2

1 = σ2
2 as in Theorem 1, the result

follows from Theorem 2. This particular case of Theorem 1 can
be understood as a Corollary to Theorem 2, and vice versa.

VI. DECORRELATING TRANSFORMATION APPROACH

In this section, we propose a person-by-person optimal so-
lution to the scheduling of two arbitrarily correlated Gaussian
random variables by using pre- and postprocessing blocks on

Fig. 5. System architecture for the arbitrarily correlated case. The pre-
processing block implements a decorrelating linear transformation W
obtained from the eigendecomposition of the covariance matrix Σ. The
postprocessing block implements the inverse of the decorrelating trans-
formation WT.

the observations and the estimates. The idea is to “decorrelate”
the two observations using an invertible linear transformation,
use the max-scheduling/mean-estimation policies on the trans-
formed random variables, and then to “correlate” the estimates
using the inverse transformation. This strategy is depicted in the
block diagram of Fig. 5.

Consider the eigendecomposition of the covariance matrix Σ:

Σ = WΛWT (62)

where WWT = I, and Λ is a diagonal matrix. Using the matrix
W, define the following scheduling and estimation policies:

Udec(x) def= Umax (Wx) , x ∈ R2 (63)

and

Edec(i, ξ) def= WTEmean(i, ξ), i ∈ {1, 2}, ξ ∈ R. (64)

Theorem 3: Let X ∼ N (0,Σ), where Σ is a symmetric
positive-definite covariance matrix. The pair (Udec , Edec) is a
person-by-person optimal solution to Problem 1.

Proof: Let W be computed from the eigendecomposition
of Σ, and denote

W =

[
w11 w12

w21 w22

]
. (65)

Let x̃ ∈ R2 be defined as x̃
def= Wx. Assuming that the estimator

uses policy Edec , the optimal scheduling decision rule is to
transmit x̃1 if

(x1 − w11 x̃1)2 + (x2 − w12 x̃1)2 ≤ (x1 − w21 x̃2)2

+ (x2 − w22 x̃2)2 . (66)

Recalling that x = WTx̃, (66) is equivalent to

(w2
21 + w2

22)x̃
2
2 ≤ (w2

11 + w2
12)x̃

2
1 . (67)

Since W is a unitary matrix, the above inequality is equivalent
to

|x̃2 | ≤ |x̃1 |. (68)

Therefore, we have

U�
Ed e c = Udec . (69)

Conversely, assume that the scheduler uses Udec . Let i, j ∈
{1, 2} such that i �= j. Then, we have

E�
Ud e c (i, x̃i) = WTE

[
X̃ | Y = (i, x̃i)

]
(70)
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where

X̃
def= WX. (71)

Computing the above expectation gives

E
[
X̃i | Y = (i, x̃i)

]
= x̃i (72)

and, for j �= i, we have

E
[
X̃j | Y = (i, x̃i)

]
=

∫ |x̃i |
−|x̃i | x̃j fX̃j |X̃ i = x̃i

(x̃j )dx̃j∫ |x̃i |
−|x̃i | fX̃j |X̃ i = x̃i

(x̃j )dx̃j

. (73)

Since X̃i ⊥⊥ X̃j , and fX̃j
is an even function, we have

E
[
X̃j | Y = (i, x̃i)

]
= 0, x̃i ∈ R. (74)

Therefore, we have

E�
Ud e c = Edec . (75)

�
Remark 7: Despite the fact that (Udec , Edec) is person-by-

person optimal for Problem 1, we will show later that this is a
suboptimal solution in general. For example, for a symmetrically
correlated Gaussian random variables, the pair (Umax , E soft)
yields a smaller cost, albeit the difference in performance is
not large. We conjecture that, in general, the globally optimal
estimation policy is nonlinear. However, Theorem 3 is a useful
result because it leads to person-by-person optimal policies for
systems with n sensors measuring correlated Gaussian random
variables, as we will formally state in Section IX.

VII. NORMALIZATION APPROACH

In view of Theorem 3, one may be inclined to think that an-
other possible person-by-person optimal solution to Problem 1
can be constructed for the general correlated case by means of
the normalization approach. The normalization approach con-
sists of applying a linear transformation to the random variables
X1 and X2 such that they are symmetrically correlated with unit
variances.

Define the following scheduling and estimation policies:

Unorm(x) def= Umax(Nx), x ∈ R2 (76)

where

N def=

[
1/σ1 0

0 1/σ2

]
(77)

and

Enorm(i, ξ) def= N−1 · E soft(i, ξ), i ∈ {1, 2}, ξ ∈ R. (78)

Notice that when using this scheme, what is transmitted to the
estimator over the channel are the normalized random variables,
i.e., X̃1 or X̃2 , where

X̃i
def=

Xi

σi
, i ∈ {1, 2}. (79)

Theorem 4: The policy pair (Unorm , Enorm) is not person-
by-person optimal for Problem 1.

Fig. 6. Scheduling decision region induced by the normalization ap-
proach.

Proof: Assume by contradiction that (Unorm , Enorm) is
person-by-person optimal.

Assuming that U = Unorm , it is straightforward to show that

E�
Un o rm (1, x̃1) =

[
σ1 · x̃1

σ2 · ηsoft(x̃1)

]
(80)

and

E�
Un o rm (2, x̃2) =

[
σ1 · ηsoft(x̃2)

σ2 · x̃2

]
. (81)

Therefore, we have

E�
Un o rm = Enorm . (82)

However, we will now show that U�
En o rm �= Unorm . Assuming

that the estimator uses policy Enorm , then the optimal scheduling
decision rule is to transmit x̃1 if∣∣x2 − σ2 · ηsoft(x̃1)

∣∣ ≤ ∣∣x1 − σ1 · ηsoft(x̃2)
∣∣ (83)

which is equivalent to

σ2 ·
∣∣x̃2 − ηsoft(x̃1)

∣∣ ≤ σ1 ·
∣∣x̃1 − ηsoft(x̃2)

∣∣. (84)

Consider an instance of Problem 1 with σ2
1 = 2, σ2

2 = 1,
and ρ = 0.3. The decision region induced by (84) for this set of
parameters must be obtained numerically and is shown in Fig. 6.
As we can readily see, the decision region is characterized by
two nonlinear curves and differs significantly from the desired
scheduling decision region defined by the inequality |x̃1 | ≥ |x̃2 |.
Therefore, we have

U�
En o rm �= Unorm (85)

which implies that (Unorm , Enorm) is not person-by-person op-
timal for Problem 1. �

VIII. LINEAR MMSE ESTIMATORS

In this section, we will consider the design of jointly optimal
scheduling and estimation policies when the estimation poli-
cies are constrained to belong to the parameterizable class of
piecewise linear estimation policies.
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Definition 5 (Class of admissible piecewise linear esti-
mation policies): Let a ∈ R2 , ξ ∈ R, and i ∈ {1, 2}. An ad-
missible estimation policy E linear

a ∈ E is piecewise linear if it
has the following structure:

E linear
a (i, ξ) =

{
[ξ a2ξ]

T, if i = 1

[a1ξ ξ]T, if i = 2.
(86)

The set of all admissible piecewise linear estimation policies is
denoted by Elinear .

A. Linear MMSE Estimation of Symmetrically Correlated
Gaussian Random Variables

Within the class of piecewise linear estimators, Problem 1
admits a unique solution when the random variables have equal
variance. Before stating this result in Theorem 5, we show that
the search for linear MMSE estimators can be performed by
solving a finite-dimensional optimization problem.

Proposition 1: Consider Problem 1 with the additional con-
straint that E ∈ Elinear . Then, the problem is equivalent to the
following finite-dimensional nonconvex optimization problem:

minimize
a∈R2

Jq (a) (87)

where the objective function Jq : R2 → R is defined as

Jq (a) def= E
[
min

{
(X1 − a1X2)

2 , (X2 − a2X1)
2
}]

. (88)

Proof: Recall the cost functional

J (U , E) = E
[
(X1 − X̂1)2 + (X2 − X̂2)2

]
. (89)

If E ∈ Elinear , then the cost can be rewritten in integral form as

J (U , E) =
∫

R2
(x1 − a1x2)

2 1(U(x) = 2)fX (x)dx

+
∫

R2
(x2 − a2x1)21(U(x)=1)fX (x)dx. (90)

For an arbitrarily fixed a ∈ R2 , the optimal scheduling policy
U�

a is given by

U�
a (x) def=

{
1, if (x2 − a2x1)

2 ≤ (x1 − a1x2)
2

2, otherwise.
(91)

Therefore, we may, without loss of optimality, define a new cost
solely in terms of a ∈ R2 as follows:

Jq (a) def= J (U�
a , E) (92)

which is equal to the expression in (88). �
Theorem 5: Consider two symmetrically correlated Gaus-

sian random variables with variance σ2 and correlation coeffi-
cient ρ ∈ [0, 1). Constraining the estimator to belong to the class
of piecewise linear functions, the policy pair (Umax , E linear

a� ) is
globally optimal for Problem 1, where

a� =
ρ · σ2

2 ·
∫

R2 x2
11(|x1 | ≥ |x2 |)fX (x)dx

·
[

1
1

]
. (93)

Proof: See Appendix B. �

Fig. 7. Performance of three different scheduling and estimation
schemes for symmetric correlated Gaussian random variables with vari-
ance σ2 = 1.

Example 1: The performance of the scheduling/estimation
schemes of Sections V, VI, and VIII-A is displayed in Fig. 7 for
symmetrically correlated Gaussian random variables with vari-
ance σ2 = 1. The system implementing max-scheduling and
nonlinear soft-thresholding estimation of Theorem 2 has the
best performance. We conjecture that (Umax , E soft) is indeed
the globally optimal solution in this case. The performance of
the strategy based on the decorrelating transformation approach
has the second best performance, and as we can see, it shows that
a person-by-person optimal solution is not necessarily globally
optimal. Finally, the worst performance is of max-scheduling
followed by the optimal linear estimator of Theorem 5. De-
spite being suboptimal for Problem 1, this is a globally optimal
solution among the class of piecewise linear estimators.

We also compare the same scheduling/estimation schemes
by evaluating their performances for symmetrically correlated
Gaussian random variables with a fixed correlation coefficient
ρ = 0.6 as a function of the variance σ2 . Fig. 8 shows that
the scheme based on the decorrelating transformation approach
performs slightly better than the scheme based on the optimal
linear estimator. The scheme based on max-scheduling and soft-
thresholding estimation outperforms both schemes for all values
of σ2 . Finally, we observe that the performance of the three
schemes scale linearly with σ2 for every ρ ∈ [0, 1). This fact can
be established analytically, and its proof is omitted for brevity.

B. Optimization via the Convex–Concave Procedure

Notice that the equivalent optimization problem stated in
Proposition 1, although finite dimensional, is a nonconvex
stochastic program. Unlike the symmetric case, a closed-form
solution to this problem for the general case is not known.
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Fig. 8. Performance of three different scheduling and estimation
schemes for symmetrically correlated Gaussian random variables with
correlation coefficient ρ = 0.6.

However, in our subsequent analysis, we will decompose the
cost into a difference-of-convex functions and derive a numeri-
cal optimization algorithm to compute locally optimal solutions
using the convex–concave procedure (CCP) [33].

Define the functions F ,G: R2 → R such that

F(a) def= (1 + a2
2)σ

2
1 + (1 + a2

1)σ
2
2 − 2ρσ1σ2(a1 + a2) (94)

and

G(a) def= E
[
max

{
(X1 − a1X2)

2 , (X2 − a2X1)
2
}]

. (95)

The cost function in (88) can be expressed as a difference of
convex functions as follows:

Jq (a) = F(a) − G(a). (96)

The CCP for minimizing Jq is defined as

a(k+1) = arg min
a∈R2

{
F(a) − Gaffine(a; a(k))

}
(97)

where

Gaffine
(
a; a(k)) def= G

(
a(k)) +

(
a(k))T(

a − a(k)) (98)

and g(a) is a subgradient of G(a). We solve the optimization
problem in (97), by using the unique solution of the first-order
optimality condition

∇F(a�) − g
(
a(k)) = 0. (99)

Since the functionF is differentiable in both of its arguments,
its gradient can be explicitly computed as

∇F(a) =

[
2a1σ

2
2 − 2ρσ1σ2

2a2σ
2
1 − 2ρσ1σ2

]
(100)

which leads to the following dynamical system:[
a

(k+1)
1

a
(k+1)
2

]
=

[ 1
2σ 2

2
0

0 1
2σ 2

1

]
g(a(k)) +

[
ρσ1/σ2

ρσ2/σ1

]
. (101)

The sequence {ak}∞k=1 defined by the above system always
converges to a critical point of Jq [34]. In order to compute a
subgradient g(a), we use the rules of (weak) subgradient calcu-
lus [35].

Proposition 2: The map g : R2 → R2 defined as

g(a) def= −2 · E[
(X1 − a1X2) · X2 · 1(|X1 − a1X2 | ≥ |X2 − a2X1 |)
(X2 − a2X1) · X1 · 1(|X1 − a1X2 | < |X2 − a2X1 |)

]

(102)

is a subgradient of G(a) defined in (95).
Proof: Let the function G(a;x) be defined as

G(a;x) def= max{G1(a;x),G2(a;x)} (103)

where

G1(a;x) def= (x1 − a1x2)2 (104)

and

G2(a;x) def= (x2 − a2x1)2 . (105)

Hence, we have

G(a) = E[G(a;X)]. (106)

In order to construct a subgradient of G(a), we first find a
subgradient g(a;x) of G(a;x) and take its expectation with
respect to x.

At the points where G1(a;x) > G2(a;x), we have

g(a;x) def= ∇G1(a;x) =

[
−2(x1 − a1x2)x2

0

]
. (107)

Similarly, at the points where G1(a;x) < G2(a;x), we have

g(a;x) def= ∇G2(a;x) =

[
0

−2(x2 − a2x1)x1

]
. (108)

When G1(a;x) = G2(a;x), either one of the gradients above
can be chosen as a subgradient of G(a;x). The following choice
is a valid subgradient of G(a;x):

g(a;x) = ∇G1(a;x)1 (G1(a;x) ≥ G2(a;x))

+ ∇G2(a;x)1 (G1(a;x) < G2(a;x)) . (109)

Finally, we let

g(a) def= E [g(a;X)] . (110)

�
Remark 8: The CCP does not guarantee that the solutions

found through it are globally optimal. Table I shows the so-
lutions found by the CCP algorithm for random variables with
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TABLE I
BEST KNOWN COST FOR SCHEDULING POLICIES INDUCED BY PIECEWISE

LINEAR ESTIMATION POLICIES FOR GAUSSIAN RANDOM
VARIABLES WITH σ2

1 = 5 AND σ2
2 = 7

variances σ2
1 = 5 and σ2

2 = 7 and several values of the correla-
tion coefficient ρ. Notice that the CCP is completely indepen-
dent of the joint density fX . One advantage of this numerical
scheme is that it can be used for jointly designing schedulers
and piecewise linear estimators for any pair of random variables,
regardless of their joint distribution.

IX. EXTENSIONS

Theorem 1 can be extended to any number of sensors observ-
ing independent zero-mean Gaussian random variables. This is
a significant generalization of the two-sensor case considered in
Section IV. Let x ∈ Rn and consider the following generaliza-
tion to the max-scheduling and mean-estimation strategies for
n ≥ 2:

Umax(x) def= arg max
i∈{1,...,n}

|xi | (111)

and

Emean(i, ξ) def= ξ · ei (112)

where ei is the ith standard basis vector in Rn , i ∈ {1, 2, . . . , n},
and ξ ∈ R.

Theorem 6: If X ∼ N (0,diag(σ2
1 , σ2

2 , . . . , σ2
n )), then

(Umax , Emean) is a person-by-person optimal solution to Prob-
lem 1.

Theorem 6 is useful for the scheduling of n sensors with
arbitrary correlation matrix provided that we use the pre- and
postprocessing using the decorrelating transformation approach.
We present the generalization of Theorem 3 to an arbitrarily
correlated n-dimensional Gaussian random vector.

Theorem 7: Let X ∼ N
(
0,Σ) and the unitary matrix W be

obtained from the eigendecomposition of the covariance matrix
as Σ = WΛWT. Let x ∈ Rn . Define

Udec(x) def= Umax(Wx) (113)

and

Edec(i, ξ) def= WTEmean(i, ξ) (114)

where Umax and Emean are given by (111) and (112), respec-
tively, with i ∈ {1, 2, . . . , n} and ξ ∈ R. The pair (Udec , Edec)
is a person-by-person optimal solution to Problem 1.

Remark 9: The proofs of Theorems 6 and 7 are similar to
the proofs of Theorems 1 and 3 and are omitted for brevity.

X. CONCLUSION

We have introduced a new scheduling problem, where a cen-
tralized agent observes the realization of a bivariate Gaussian
vector and chooses a single component to be transmitted to a
remote estimator. The motivation for this problem comes from
information constraints commonly found in networked control
and estimation, where a single packet can be reliably transmit-
ted over a communication link at a time. The design of globally
optimal scheduling and estimation policies is elusive due to the
lack of convexity of the overall optimization problem. However,
we can establish the person-by-person optimality of specific
pairs of policies in two important special cases: independent
observations and symmetrically correlated observations. In the
independent case, the person-by-person optimality result can be
extended to any number of sensors. We also showed how to use
the first person-by-person result to obtain suboptimal policies
for the general correlated Gaussian case. Finally, we have con-
sidered the joint design of scheduling and estimation policies for
a bivariate Gaussian source when the estimator is constrained to
the class of piecewise linear estimators. In this case, we obtained
locally optimal solutions to the resulting nonconvex optimiza-
tion problem by using the CCP.

There are many open research questions stemming from this
work. One important problem is to prove the conjecture that the
pair (Umax , Emean) is globally optimal for the two main cases
in the first part of this paper. We believe that the proof of global
optimality will involve results from information theory, such as
the data-processing inequality and rate-distortion function for
Gaussian vectors. A second topic for future work is to extend the
person-by-person optimality result for n-dimensional correlated
Gaussian random vectors under suitable symmetry assumptions
on the covariance matrix. Finally, another line of work is to
investigate more general jointly distributed random variables,
and to possibly account for situations where the joint distribution
is unknown and needs to be estimated from data.

APPENDIX A
MONOTONICITY OF P AND T

The proof of Theorem 2 relies on the fact that the functions
P and T defined in (45) and (46) are nondecreasing. Here, we
present a proof of Lemma 5.

Proof of Lemma 5: Consider the function P . Recall that

P(α) def= α − η(α) (115)

where η is defined in (14). The function P can be alternatively
expressed as

P(α) = E
[
α − X

∣∣∣ − |α| ≤ X ≤ |α|
]

(116)

where X ∼ N (ρα, σ2(1 − ρ2)). Since P is an odd function, we
can constrain our analysis to α ≥ 0, without loss of generality.
Therefore, we assume that

P(α) = E
[
α − X

∣∣∣ − α ≤ X ≤ α
]
. (117)
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Notice that, when conditioned on {−α ≤ X ≤ α}, the follow-
ing inequality holds:

α − X ≥ 0 a.s. (118)

Therefore, we can rewrite P as

P(α) =
∫ ∞

0
P

(
α − X ≥ t

∣∣∣ − α ≤ X ≤ α
)

dt. (119)

Define the following function:

W(α, t) def= P
(
X ≤ α − t

∣∣∣ − α ≤ X ≤ α
)

(120)

and notice that

W(α, t) = 0, t ≥ 2α. (121)

For any fixed t ∈ [0, 2α], the function W(α, t) is nondecreasing
in α. In order to show this, consider

W(α, t) = 1 − P (α − t ≤ X ≤ α)
P (−α ≤ X ≤ α)

. (122)

Let

ft(α) def= P (α − t ≤ X ≤ α) . (123)

The fact that t ∈ [0, 2α] implies that the derivative of f with
respect to α satisfies

f ′
t(α) ≤ 0. (124)

We proceed to define g as

g(α) def= P (−α ≤ X ≤ α) . (125)

It can be easily verified that g is nondecreasing. Therefore,
we have

g′(α) ≥ 0. (126)

Since

f ′
t(α)g(α) ≤ 0 ≤ ft(α)g′(α) (127)

we have (
ft(α)
g(α)

)′
≤ 0 (128)

which implies that W(α, t) is a nondecreasing function of α for
all t ∈ [0, 2α]. Since

P(α) =
∫ 2α

0
W(α, t)dt (129)

is a superposition of nondecreasing functions, the functionP(α)
is also nondecreasing. The proof of monotonicity of T (α) fol-
lows the same sequence of steps and is omitted for brevity. �

APPENDIX B
PROOF OF THEOREM 5

Proof: Under the assumption that the random variables are
symmetrically correlated, i.e., σ1 = σ2 , we may constrain the

optimization of Jq to a = [θ θ]T with θ ∈ R, without loss of
optimality. Therefore, we have

E linear
a (1, x) =

[
x

θx

]
and E linear

a (2, x) =

[
θx

x

]
. (130)

Lemma 2 implies that for all θ < 1, the policy Umax is optimal
for E linear

a . Evaluating the cost for the pair (Umax , E linear
a ), we

obtain

J (Umax , E linear
a ) = E

[
(X2 − θX1)2 | U = 1

]
P(U = 1)

+ E
[
(X1 − θX2)2 | U = 2

]
P(U = 2).

(131)

The symmetry of the sources implies that the first-order deriva-
tive with respect to θ is

∂

∂θ
J (Umax , E linear

a ) = − 2ρ · σ2

+ 4θ · E
[
X2

1 | U = 1
]
P(U = 1).

(132)

Therefore, the first-order optimality condition implies that

θ� =
ρ · σ2

2 ·
∫

R2 x2
11(|x1 | ≥ |x2 |)fX (x)dx

. (133)

It can be shown that θ� computed above satisfies θ� < 1. �

REFERENCES

[1] P. J. Antsaklis, “Goals and challenges in cyber-physical systems research,”
IEEE Trans. Autom. Control, vol. 59, no. 12, pp. 3117–3119, Dec. 2014.

[2] M. M. Vasconcelos and N. C. Martins, “Optimal estimation over the
collision channel,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 321–
336, Jan. 2017.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[4] U. Mitra et al., “KNOWME: A case study in wireless body area sen-
sor network design,” IEEE Commun. Mag., vol. 50, no. 5, pp. 116–125,
May 2012.

[5] K. Arrow, “The economics of agency,” Inst. Math. Stud. Social Sci.,
Stanford Univ., Stanford, CA, USA, Tech. Rep. No. 451, Oct. 1984.

[6] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[7] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

[8] J. Le Ny, E. Feron, and M. A. Dahleh, “Scheduling continuous-time
Kalman filters,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1381–
1394, Jun. 2011.

[9] J. Moon and T. Basar, “Static optimal sensor selection via linear integer
programming: The orthogonal case,” IEEE Signal Process. Lett., vol. 24,
no. 7, pp. 953–957, Jul. 2017.

[10] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,” Automatica, vol. 48,
pp. 2482–2493, 2012.

[11] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Trans. Signal Process., vol. 57, no. 2, pp. 451–462, Feb. 2009.

[12] Y. Mo, R. Ambrosino, and B. Sinopoli, “Sensor selection strategies for
state estimation in energy constrained wireless sensor networks,” Auto-
matica, vol. 47, no. 7, pp. 1330–1338, Jul. 2011.

[13] L. Shi and H. Zhang, “Scheduling two Gauss-Markov systems: An optimal
solution for remote state estimation under bandwidth constraint,” IEEE
Trans. Signal Process., vol. 60, no. 4, pp. 2038–2042, Apr. 2012.

[14] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, “Optimal periodic
sensor scheduling in networks of dynamical systems,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3055–3068, Jun. 2014.

Authorized licensed use limited to: University of Southern California. Downloaded on March 20,2020 at 01:36:31 UTC from IEEE Xplore.  Restrictions apply. 



244 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 1, MARCH 2020

[15] A. Zare, H. Mohammadi, N. K. Dhingra, M. R. Jovanović, and T. T.
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