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Packet collisions     Long propagation delays            Lack of feedback

Disturbance!

Underwater acoustic sensor networks
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• Widely used in wireless communications 
• >1 simultaneous transmission results in a collision  

• Users decide whether to transmit or not
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Input alphabet

Xi = {S, xi(1), xi(2), · · · , xi(qi)}, i 2 {1, 2}

S is the silent symbol

Collision channel
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qi non-silent symbols

(log qi payload bits)qi + 1 symbols



Collision channel
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Silent symbol: Collision symbol: 

Packets from different users  
have different headers!

Xi = {S, xi(1), xi(2), · · · , xi(qi)}, i 2 {1, 2}

S C

Y = X1 [ X2 [ {C}

X1 \ X2 = {S}
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Collision channel
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Deterministic 
channel

H(Y |X1, X2) = 0
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The implicit binary noiseless channel

Success Silence Collision

U1 = 1, U2 = 0 U1 = 0, U2 = 0 U1 = 1, U2 = 1

U1 U2From the channel output we can always recover       and      
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Ui =

(
1 if Xi 6= S

0 if Xi = S
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H(U1, U2|Y ) = 0

1. Dhulipala, Fragouli and Orlitsky, “Silence-based communication”, IEEE Trans. IT 2010

transmit

do not transmit



The implicit binary noiseless channel

Each user sends at least

H(Ui) bits/channel use
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The capacity region of the Collision MAC is the

convex hull of (R1, R2) satisfying

Theorem 1

✓i = Pr(Xi = S)

Hb(✓) = ✓ log
1

✓
+ (1� ✓) log

1

1� ✓
binary entropy function
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Capacity of the collision channel

R1  Hb(✓1) + log q1 · (1� ✓1) · ✓2
R2  Hb(✓2) + log q2 · (1� ✓2) · ✓1

implicit channel explicit channel

Pr(success for Ei)

Ri 
z }| {
Hb(✓i)+

z }| {
log qi · (1� ✓i) · ✓j| {z }

✓i is the probability of user i being silent
log qi is number of payload bits of user i



Sketch of proof

R1  I(X1;Y |X2)

R2  I(X2;Y |X1)

R1 +R2  I(X1, X2;Y )

R1

R2

I(X1;Y |X2)

I(X2;Y |X1)

R1 +R2 = I(X1, X2;Y )

The capacity region of a DMAC is the

convex-hull of (R1, R2) satisfying:

2. Ahlswede, “Multi-way communication channels,” ISIT 1971
3. Liao, “Multiple access channels,” PhD thesis 1972

PX1X2 = PX1PX2
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I(Xi;Y |Xj) = H(Ui) +H(Xi|Ui = 1)⇥ Pr(Ui = 1) · Pr(Uj = 0)

Lemma 1

The capacity achieving distributions are uniform on the non-silent symbols

I(Xi;Y |Xj)  H(Ui) + log qi · Pr(Ui = 1) · Pr(Uj = 0)

�����! H(Xi|Ui = 1)  log qi
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Sketch of proof



Lemma 2

The sum-rate inequality is redundant

I(X1, X2;Y ) = I(X1;Y |X2) + I(X2;Y |X1)

I(X1, X2;Y )
(a)
= H(Y )
(b)
= H(Y, U1, U2)
(c)
= H(U1) +H(U2) +H(Y |U1, U2)

(a) The channel is deterministic

(b) Implicit channel property

(c) Chain rule

⌅

H(Y |U1, U2) = H(X1|U1 = 1)Pr(U1 = 1)Pr(U2 = 0)

+H(X2|U2 = 1)Pr(U2 = 1)Pr(U1 = 0)
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Sketch of proof
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maximize µ
h
Hb(✓1) + log q1 · (1� ✓1) · ✓2

i
+ (1� µ)

h
Hb(✓2) + log q2 · (1� ✓2) · ✓1

i

subject to 0  ✓i  1, i 2 {1, 2}

4. Calvo, Palomar, Fonollosa, and Vidal, “On the computation of the capacity of the discrete MAC”, TCOM 2010

Computing the capacity region
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Capacity region of the collision channel

Small alphabets: non-trivial use of silence and collision symbols 
 

Large alphabets: time-sharing approaches the capacity

Time-sharing 
inner bound
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J1(PX1 , PX2) = I(X1;Y |X2)

J2(PX1 , PX2) = I(X2;Y |X1)

Player 1 chooses PX1

PX2Player 2 chooses 

Pay-offsActions

redundant

R1  I(X1;Y |X2)

R2  I(X2;Y |X1)

R1 +R2  I(X1, X2;Y )
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Each user maximizes its own maximum achievable rate 

A mutual information game

5. Berry and Tse, “Shannon Meets Nash on the Interference Channel”, IEEE Trans. IT 2011
6. Médard, “Capacity of correlated jamming channels”, Allerton 1997
7. Shaffie and Ulukus, “Mutual Information Games in Multiuser Channels with Corr. Jamming”, IEEE Trans. IT 2009



Does a Nash-equilibrium exist?

J1(P
⇤
X1

, P ⇤
X2

) � J1(PX1 , P
⇤
X2

), 8PX1

J2(P
⇤
X1

, P ⇤
X2

) � J2(P
⇤
X1

, PX2), 8PX2

Nash-equilibrium solution
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Theorem 2

The Nash-equilibrium solution exists and is unique

A mutual information game



Fixing PX2

˜J1(✓1, ✓2) = Hb(✓1) + log q1 · ✓1 · (1� ✓2)
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For every fixed                   ✓2 2 [0, 1]

J̃1(✓1, ✓2) is strictly concave on ✓1

J1(PX1 , PX2)  H(U1) + log q1 · Pr(U1 = 1) · Pr(U2 = 0)

Sketch of proof
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⌅

Every Nash-equilibrium  
lies on both reaction curves

Since they always intersect at a single point,

the Nash-equilibrium exists and is unique

1

1 + q1

1

1 + q2
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Ri(✓j) =
1

1 + q
✓j
i

NE

Reaction curves



1. Fundamental limits of communication over the collision channel 

2. Trade-off between implicit channel vs. explicit channel 

3. Operation at the boundary requires centralized design (cooperation) 

4. Selfish behavior leads to a game

1. Capacity of other types of collision channel:  

i.  feedback 

ii. type II 

iii. capture 

2. Is the Nash-equilibrium stable? Price-of-Anarchy? 

3. Are there practical codes for the collision channel?

Summary & future work
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S = C



Appendix
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1
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R1 +R2 = 1.5

C2-BAC

Binary Adder Channel Binary Multiplier Channel

Other deterministic MACs

X1

X2

2-BMC Y = X1 ·X2

X1

X2

Y = X1 +X22-BAC

R1

R2

1

1

C2-BMC

R1 +R2 = 1

(“Erasure” MAC)

206. El Gammal and Kim, Network Information Theory
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maximize µR1 + (1� µ)R2

subject to R1  I(X1;Y |X2)

R2  I(X2;Y |X1)

R1 +R2  I(X1, X2;Y )

maximize µ
h
Hb(✓1) + log q1 · (1� ✓1) · ✓2

i
+ (1� µ)

h
Hb(✓2) + log q2 · (1� ✓2) · ✓1

i

subject to 0  ✓i  1, i 2 {1, 2}

with variables R1, R2, PX1 , PX2

Non-convex, in general

6. Calvo, Palomar, Fonollosa, and Vidal, “On the computation of the capacity of the discrete MAC”, TCOM 2010

�����! Theorem 1

Computing the capacity region



1. Networked control
2. Remote estimation
3. Sensor networks
4. Robotic networks
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Communication
network

      Communication
network

Xi

Yi

local observation

received packet

transmitted packet

Si
DMi

Many applications Many challenges

Communication is imperfect:
Delays, noise, quantization,

congestion, packet drops, connectivity and
packet collisions

22

Networked decision systems

1. Vasconcelos and Martins, “Optimal estimation over the collision channel”, IEEE TAC 2017 
2. Vasconcelos and Martins, “Remote estimation games over the shared networks”, Allerton 2015


