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Context

• Networked control systems

• Decision Makers cooperating to 
achieve a common goal

Network models

• Incomplete graphs

• Rate-limited point-to-point channels

• Additive White Gaussian Noise

• Analog Erasure channel What about interference?

Motivation
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• Multiple agents sharing a communication medium

• Physical layer: Multiple Access Channel

• MAC/Network layer: Collision Channel
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Channel Model

• DM chooses to transmit or not

• Collision when two or more 
DMs transmit

• Simplest model for interference

Interference
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Ui = �i(Xi) 2 {0, 1}

R =

8
>><

>>:

Ø, if S1 = S2 = Ø
X1, if S1 = X1, S2 = Ø
X2, if S1 = Ø, S2 = X2

C, if S1 = X1, S2 = X2

Si =

⇢
Xi, if Ui = 1
Ø, if Ui = 0

⌘(R) = (⌘1(R), ⌘2(R))

Jointly minimize the following cost functional 

Problem Statement

Xi ⇠ N (0,�2
i )

X1 ?? X2

J(�1, �2, ⌘) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i

⌘

(X̂1, X̂2) = ⌘(R)

�1

�2
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Why is this a relevant problem?

•New channel model for distributed estimation/control problems

•Team decision problem (non-convex in general)

•Captures the effects of an important network limitation

Problem Statement

J(�1, �2, ⌘) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i

⌘

�1

�2
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1. Relationship with remote estimation with communication costs

2. Optimality of threshold policies using infinite dimensional LP

3. Connection with quantization theory

4. Propose an iterative algorithm: Modified Lloyd-Max

Our main results
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Part 1. Remote Estimation with Communication Costs 
Subproblem

J = E[(X1 � X̂1)
2] +

⇣
E
h
(X2 � X̂2)

2|U1 = 1
i
� E

h
(X2 � X̂2)

2|U1 = 0
i⌘

Pr(U1 = 1)

+E[(X2 � X̂2)
2|U1 = 0]

•Every transmission made by DM1 potentially causes collisions for DM2 

(and vice-versa)

•For a fixed              , DM1 must pay a cost per transmission attempt(�2, ⌘2)

Lemma: For fixed            s.t.                    , we have(�2, ⌘2) ⌘2(X2) = X2

⇢21 , E
h
(X2 � X̂2)

2|U1 = 1
i
�

h
(X2 � X̂2)

2|U1 = 0
i
� 0

Thursday, October 3, 13



Part 1. Remote Estimation with Communication Costs 
Subproblem

Proposition: From the perspective of DM1, the problem is equivalent to jointly 

minimizing the following cost functional

• Absence of collisions: solved by Lipsa & Martins (TAC ’11)

Solution: symmetric threshold policies

• Presence of collisions:

Solution: asymmetric threshold policies

J(�1, ⌘1) = E
h
(X1 � X̂1)

2
i
+ ⇢21 Pr(U1 = 1)
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Part 2. Optimality of threshold policies

• Fixing the policies of DM2: 

• Channel is occupied w.p.  

DM Estimator
RCollision 

Channel

X1 S1

U2

X̂1

Pr(U2 = 1) = �, U2 ?? X1

• Drop all the subscripts and work in the single DM case.

D , U2

⇢ , ⇢21

U , U1

(�, ⌘) , (�1, ⌘1)
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Part 2. Optimality of threshold policies

•Channel is occupied w.p.  

DM Estimator
X S

D

R X̂Collision 
Channel

Pr(D = 1) = �, D ?? X

•Given          , let X = x

U ⇠ B(g(x)), 0  g(x)  1, 8x 2 R

• U = 0 ) X̂ = ⌘

⇤(Ø) , x̂0

• (U = 1, D = 0) ) X̂ = ⌘

⇤(X) = X

• (U = 1, D = 1) ) X̂ = ⌘

⇤(C) , x̂1

randomized policy

X X

Implicit Channel

x̂0

x̂1

�

1� �

Ø

S R

free

costly
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Part 2. Optimality of Threshold Policies

•The cost functional becomes

•For a fixed       , the optimal values of            are g(x) (x̂0, x̂1)

•Rewriting the cost functional as a function of g(x)

Clearly non-convex in       !              

J = E
⇥
(X � x̂0)

2|U = 0
⇤
Pr(U = 0) + E

⇥
�(X � x̂1)

2 + ⇢|U = 1
⇤
Pr(U = 1)

x̂0 = E[X|U = 0]

x̂1 = E[X|U = 1]

J = (1� �) (1� E[g(X)])E[X2|U = 0]�
"
(1� E[g(X)])2

E[g(X)]
� + (1� E[g(X)])

#
x̂

2
0+

+⇢E[g(X)] + ��

2

g(x)
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Part 2. Optimality of Threshold Policies

•Rewriting the cost functional as a function of g(x)

•For every    , constrain E[g(X)] = ↵

J(↵) = (1� �) (1� ↵)E[X2|U = 0]�
"
(1� ↵)2

↵

� + (1� ↵)

#
x̂

2
0 + ⇢↵+ ��

2

x̂0
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•Re-parametrizing:

minimize

µ2L1(R)

Z

R
x

2
µ(x)dx

subject to

Z

R
µ(x)dx = 1

Z

R
xµ(x)dx = x̂0

✓L1(R)  µ  1

1� ↵

N (0,�

2
)

µ(x) , (1� g(x)) fX(x)

1� ↵

Theorem:  The optimal communication 
policies are of the threshold type.

Part 2. Optimality of Threshold Policies

minimize

g
E[X2|U = 0]

subject to E[g(X)] = ↵

E[X|U = 0] = x̂0

0  g(x)  1, 8x 2 R.
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minimize

µ2L1(R)

Z

R
x

2
µ(x)dx

subject to

Z

R
µ(x)dx = 1

Z

R
xµ(x)dx = x̂0

✓L1(R)  µ  1

1� ↵

N (0,�

2
)

• Infinite dimensional LP

• “Entropy minimization with lattice 
constraints”, Borwein et al. (JOTA’94)

• Use duality theory

1

1� ↵
N (0,�2)

x̂0

Z

R
µ(x)dx = 1

x

x

x̂0

g(x)

transmit transmitiddle

Part 2. Optimality of Threshold Policies
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Part 3. Connection with Quantization Theory

• Partition     into      and        (quantization regions):R M Mc

x 2 Mc ) (x� x̂0)
2

x 2 M ) �(x� x̂1)
2 + ⇢

asymmetric distortion
function

• Optimal representation points are the centroids of      andM Mc

Pr(X 2 Mc)x̂0 = �Pr(X 2 M)x̂1

J = E
⇥
(X � x̂0)

2|U = 0
⇤
Pr(U = 0) + E

⇥
�(X � x̂1)

2 + ⇢|U = 1
⇤
Pr(U = 1)
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Part 3. Connection with Quantization Theory

J(x̂0, x̂1,M) =

Z

M

⇥
�(x� x̂1)

2 + ⇢

⇤
fX(x)dx+

Z

Mc

(x� x̂0)
2
fX(x)dx

�(x� x̂1)
2 + ⇢

x2Mc

?
x2M

(x� x̂0)
2

• How do we determine      and       ?M Mc

p(x) , (� � 1)x2 + 2(x̂0 � �x̂1)x

+�(x̂1)
2 � (x̂0)

2 + ⇢

x

x(x̂0, x̂1) x(x̂0, x̂1)

p(x)
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Part 4. An Iterative Algorithm: Modified Lloyd-Max 

Step 0: Initialize
M(0)

c =
h
x

(0)
, x

(0)
i Step 2: Update p(x)

p

(i)(x) := (� � 1)x2 + 2(x̂(i)
0 � �x̂

(i)
1 )x+

�(x̂(i)
1 )2 � (x̂(i)

0 )2 + ⇢

Step 3: Compute roots 
and update Mc

x

(i) := min{roots(p(i)(x))}

x

(i)
:= max{roots(p(i)(x))}

Step 1: Compute 
representation points

x̂

(i)
1 = � Pr(X 2 M(i�1)

c )

1� Pr(X 2 M(i�1)
c )

x̂

(i)
0

x̂

(i)
0 = E[X|X 2 M(i�1)

c ]
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Part 4. An Iterative Algorithm: Modified Lloyd-Max 

•Question: Does the MLM algorithm converge?

Conjecture:  Provided                           , the 
algorithm will always converge to (0,0) or a global 
minimum.          

fX(x) = N (0,�2)

•Evidence: MLM is a descending algorithm & cost has no local minima

-3 -2 -1 0 1 2 3
-6
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0
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J̃(x̂0, x̂1)

x̂0

x̂1

x̂1

x̂0
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A few consequences of our results

DM1
X1

DM2
X2

S1

S2

Collision 
Channel Estimator

R (X̂1, X̂2)

•The policy for DMi was reduced to a pair of real numbers 

•Reduce problem as a finite dimensional static team 

•An implementable algorithm

•Ideas on how to extend to multidimensional dynamical systems

(xi, xi)
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Conclusion and Final Remarks

•A new channel model for networked estimation/control

•Ran into a familiar problem along the way

•Used different set of tools: randomized policies + infinite dimensional LP 

•Exploited the idea of signaling and quantization to find jointly optimal 

communication and estimation policies
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