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Motivation

Context

Estimator 1

* Networked control systems -\

e Decision Makers cooperate or

Wireless
Network

Estimator 2

compete to achieve certain goals -/

Estimator 3

Network models

* Incomplete graphs

e Rate-limited point-to-point channels
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‘ Estimator N \

e Additive White Gaussian Noise -

* Analog Erasure channel
\_

What about interference?
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Interference

e Multiple agents sharing a communication medium
* Physical layer: Multiple Access Channel, Interference Channel

e MAC/Network layer: Collision Channel

Channel Model

e DM chooses to transmit or not
e Collision when two or more

DMs transmit
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eSimplest model for interference



Problem Statement
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Each sensor-estimator pair minimizes its own
cost functional

Ji(Yis v, mi) = E[(Xi — X;)?]




Previous work
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Vasconcelos & Martins (Allerton '13)

* Team decision problem - Focus on full cooperation

* Proved the optimality of threshold policies (asymmetric in general)



Our main results

Focus on competitive behavior

|. Obtain the structure of security and Nash equilibrium policies

collision channel without and with capture

2. Establish a connection with optimal quantization theory

3. Policy design using the Lloyd-Max algorithm



Part I. The collision channel without capture
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Assume DM2 transmits with prob. | - selfish behavior
Worst case scenario for DMI

Estimator | only receives Y; € {g, ¢}



Security policies

When the channel is always occupied by the opponent:

Best communication policy Best estimation policy
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The security policy is determined by the optimal | bit quantizer



Security policies

-

Proposition |:
A security policy for DMi in the game over the collision channel has
a single threshold structure of the form

sec 17 €L 2 Oa
%) =3 0.z <o,

If both DMs use security policies, their incurred costs are:

3 2
gsee — Z (1 - 2 ) 52
¢ 4( W)OZ




Security policies

Example:
2 sec _self _sec sec 3 2 2
0-1 — 1 Jl (/yl ,/72 ,771 ) — 03634 Jl — Z 1 — ; 0-1 — 02725
2 self _sec __self sec 3 2 2
oy =2 J2(’Y2 V1 5112 ) =1 Jy o = 1 T oy = 0.5450

A security policy accesses the channel with probability 5 = 0.5

/ °
Question:

What is the structure of the optimal communication policy when
the channel is occupied with probability 3 < 1?
\_




Structure of Nash equilibrium policies

Analysis from the perspective of a single DM

Assume the opponent transmits with probability [

D
S Collision Y Remote %
X —»| Sensor > Channel ™| Estimator — X
8 Ui
D ~ B(B) U=0=Y =0 n(X)=X
U =~(X) € {0,1} U=1,D=0=Y =X (@) = 2
U=1,D=1=Y =¢ n(€) = iy

J(v,n) = E[(X — 20)?|U = 0] Pr(U = 0) + E[B(X — #,)*|U = 1] Pr(U = 1)

Binary quantization with asymmetric distortion



Structure of Nash equilibrium policies

J(Ag, 20, 21) = / (x — 20)° fx (x)dx + (x — 1) fx (x)dx
Ag R\Ag
Necessary optimality condition:  z€ A} & (z —2¢)* < B(z — #1)*
def A V2 A \2

p(z) = (x — Zo)” — Bz — Z1)

Ag ={z eR|p(z) <0}
p'(x) >0 = A} is a convex set
.
Theorem |-

The Nash equilibrium policies for the game over the collision
channel without capture have the following threshold structure

nash . O, if 71 S X S T2,
7 ) = { 1, otherwise.




Design via Lloyd-Max Algorithm

|. From a pair of representation points compute the roots of p()
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2.The new representation points are the centroids of Al A" =Rr\Al"
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This algorithm converges globally to a local minimum



Design via Lloyd-Max Algorithm

Example |I:  8=05,X~N(0,1)

. 0, if 0.3813 < 2 < 4.9844;
(@) =94

, otherwise.
( x, if y = x;
77* (y) — < +1O5547 lf Yy = ®7 transmit idle transmit
| —0.5720, ifz=¢.

=> X
(-

T1
J* = 0.2488

Example 2: X; ~N(0,1) X5 ~N(0,2)

o 0, +0.2736 < z; < +6.6828;
N () =4 ) 1 Jrash — 0.9786

otherwise
nash
0, +0.3869 < x5 < +9.4510; Jo = 0.9573

nash L
V2 (@) = 1, otherwise




Remarks

|. The structural result is independent of the densities of X, X

2. The convergence of the Lloyd-Max algorithm depends on the pdfs

3.The Nash equilibrium policies perform worse than the security ones:

Jrash — (0.2786 J5°¢ = 0.2725
Juash — 0.5573 J5°¢ = 0.5450

There is an incentive to be conservative even in the

absence of communication costs



Part Il. Collision channel with capture

power Capture mechanism:

In case of a collision, the packet

packet 1

ket transmitted with the highest power

captures the channel and the other is

time

> lost.

Allow DMs to choose among 3 power levels:  U; € {0,1,2}

Cost functional must take into account the communication cost:

I (viyvismi) = EI(X; — Xi)Q + pU;]
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Part Il. Collision channel with capture
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U=2,D=2=Y =& n(€s) = T
(X — 20)*|U = 0] Pr(U = 0)+

(81 + B2)(X — 21)% + plU = 1] Pr(U = 1)+

B2(X — 22)° 4 2p|U = 2] Pr(U = 2)

Ternary quantization problem with asymmetric distortion



Security Policies

Worst case scenario: the opponent always transmits with full power

Ba =1

e _ / (z — 0)%fx (@)da + / (@ — 31) + plfx(@)dz + / (2 — 32) + 20)fx (¢)da
Ag Ay Ag
Necessary optimality conditions:

x e A%< hi(z) <0, hy(z) <0 hi(z) = 2
r € AT < hi(z) >0,hz(x) <0 ho(x) = 22(%9 — £0) — (25 — &5 + 2p)
xr € A; = hg([lf) > O,hg(CE) > () hg(a?) 2

A7, i€ {0,1,2} are convex

" Theorem 2: A

The security policy for the game over the collision channel with
capture is determined by a regular quantizer (convex quantization

regions).
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Nash equilibrium policies

Jeap — / (z — 20)? fx (x)d + / (B + B2) (@ — 81)° + plfx (2)dat

B2 (x — 21)% + 2p) fx (x)da

T

Necessary optimality conditions: he

. p1(z) =(x — &0)* — (B1 + Bo)(x — 21)° — p
0 pa(x) =(x — Z0)° — Po(z — 22)° — 2p
p3(x) =(Ba + B1)(x — T2)* + p — Ba(x — £2)* — 2p

r e Ay pi(x) <0, pa(x)

IA A

r € AT < pi(x) >0, p3(x)

pl(x) >0={x e R |p;i(x) <0} is a convex set

Ay is the intersection of two convex sets = A is convex

A7 is the set difference of two convex sets = AJ is the union of at most two convex sets

(Theorem 3: A

The structure of a Nash equilibrium policy for the game over the

collision channel with capture is (0, ifr <z<m

sy =0 1, ifg<z<torm<z<Tg
2

| 2, otherwise.
\ J




Examples

Example |: Example 2:
X ~N(0,1),8, =1 X ~ N(0,1), 81 = 0.25, 5 = 0.125
7 (@)
,YSGC(:E)
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Conclusion

* Two new problems in networked estimation/control:
- Collision channel without capture - absence of communication costs
- Collision channel with capture - presence of communication costs

e Obtained the structure of security and Nash equilibria policies

e Results rely on optimal quantization theory with asymmetric distortion

* Several open problems:
- Existence of optimal quantizers
- Uniqueness of Nash equilibrium policies
- Convergence of the Lloyd-Max algorithm

- Dynamic games and many more!



