

Bacterial Quorum Sensing as a Sequential Decision Making System

Marcos Vasconcelos

mvasconc@usc.edu
www-bcf.usc.edu/~mvasconc

Odilon Camara Urbashi Mitra James Boedicker

Dept. of Electrical Engineering
University of Southern California

Asilomar Conference on Signals, Systems, and Computers October 28th-31st, 2018 - Pacific Grove, CA

Quorum sensing

Mechanism used by bacteria to coordinate

density dependent collective behavior

antibiotic production

collective behaviors

bioluminescence

biofilm formation

virulence factors

Quorum sensing

Enables bacteria to act as multicellular organisms!

biofilm formation

Goal

Develop a model for Quorum Sensing

Sequential decision making based on optimal control

Optimality of QS systems

How does it work?

Quorum sensing

Vibrio Fischeri luminescing

Application

Release enzymes responsible for metabolizing food

Enzymes act as public-goods

Food is available for the entire colony

Logistic Growth Model

$$x[n+1] = x[n] + \lambda \cdot x[n] \cdot \left(1 - \frac{x[n]}{\kappa}\right)$$

Intrinsic growth rate

 λ

Carrying capacity

 κ

Signaling

wlog $\sigma_s = 1$

Control signal

Active cells produce enzymes

Inactive cells DO NOT produce enzymes

$$u[n] = \mathcal{U}(x[n])$$

Control policy

Enzymes

$$e[n] = \sigma_e x[n] u[n] \label{eq:en}$$
 public good

Increase the amount of food available for the colony

Increase the Carrying Capacity of the system

$$\kappa = \kappa_0 + \Delta \kappa(e)$$
 public benefit

Public benefit $\Delta \kappa(e)$

- 1. The benefit is an increasing function of public-goods
- 2. The benefit saturates at some finite value $b_{
 m max}$
- 3. The benefit is zero when there is no public-good present

$$\Delta \kappa(e) = b_{\text{max}} \cdot \frac{(e/\tau)^h}{1 + (e/\tau)^h}$$

Simplified public benefit function

$$\Delta\kappa(e) = b_{\text{max}} \cdot \mathbf{1}(e \ge \tau)$$

Activation cost

Enzymes are costly to make!

Energy spent on making enzymes \implies Less energy for reproduction

Slow down the intrinsic growth-rate

$$\lambda = \rho - cu[n]$$

Intrinsic growth-rate vs carrying capacity

What is the best growth curve?

Intrinsic growth-rate vs carrying capacity

[5] Pai et al. (PNAS 2012)

Objective function

$$\mathcal{V}(\mathcal{U}) = \sum_{n=0}^{\infty} \beta^n (1 - \alpha u[n]) x[n]$$

etaIntertemporal trade-off

 α

Energetic cost

Low β we prioritize the present

High β we prioritize the future

Optimal control problem

$$\mathcal{V}(\mathcal{U}) = \sum_{n=0}^{\infty} \beta^n (1 - \alpha u[n]) x[n]$$

capacity

subject to

$$x[n+1] = \mathcal{F}(x[n], u[n])$$

$$\mathcal{F}(x,u) = x + \left(\rho - cu\right)x \left(1 - \frac{x}{\kappa_0 + (\kappa_1 - \kappa_0)\mathbf{1}(xu \geq \tau/\sigma_e)}\right)$$
 Intrinsic growth rate Carrying capacity

Results

The optimal control is a threshold policy

$$\mathcal{U}^*(x) = \mathbf{1}(x \ge x^*)$$

$$\alpha = 0$$

Optimal threshold is computed in closed form

Optimal threshold is computed numerically

$$x^* = \max\left\{\frac{c\kappa_0\kappa_1}{(\kappa_1 - \kappa_0)\rho + c\kappa_0}, \frac{\tau}{\sigma_e}\right\}$$

Sketch of proof

Sketch of proof
$$\mathcal{V}(x) = \max_{u \in \{0,1\}} \left\{ (1 - \alpha u)x + \beta \mathcal{V} \big(\mathcal{F}(x,u) \big) \right\}$$

$$\alpha = 0$$

$$\mathcal{V}(x) = x + \beta \max_{u \in \{0,1\}} \left\{ \mathcal{V}(\mathcal{F}(x, u)) \right\}$$

Lemma

 $\mathcal{V}(x)$ is monotone increasing

Value function iteration

Real analysis

$$\mathcal{U}^*(x) = 1 \iff \mathcal{F}(x,1) \ge \mathcal{F}(x,0)$$

Sketch of proof

$$\mathcal{F}(x^*, 1) = \mathcal{F}(x^*, 0)$$

unique nonzero solution

$$x^* = \max\left\{\frac{c\kappa_0\kappa_1}{(\kappa_1 - \kappa_0)\rho + c\kappa_0}, \frac{\tau}{\sigma_e}\right\}$$

$$x^* = \max\left\{\frac{c\kappa_0\kappa_1}{(\kappa_1 - \kappa_0)\rho + c\kappa_0}, \frac{\tau}{\sigma_e}\right\}$$

The role of the discount factor

$$\alpha = 0 \qquad \mathcal{V}(\mathcal{U}) = \sum_{n=0}^{\infty} \beta^n x[n]$$

Inst. loss in rate and gain in capacity

$$\lambda[n] = \rho - cu[n]$$

$$\kappa[n] = \kappa_0 + (\kappa_1 - \kappa_0)\mathbf{1}(e[n] \ge \tau)$$

Given the population today, maximize the population tomorrow

Myopic policy is optimal

$$\alpha > 0$$
 $\mathcal{V}(\mathcal{U}) = \sum_{n=0}^{\infty} \beta^n (1 - \alpha u[n]) x[n]$

Invest some of your population today to maximize future populations

The general case

$$\mathcal{V}(x) = x + \beta \max \left\{ \mathcal{V}(\mathcal{F}(x,0)), \mathcal{V}(\mathcal{F}(x,1)) - \frac{\alpha}{\beta} x \right\}$$

STEP 1

$$\mathcal{V}^{(0)}(x) = x$$

$$\mathcal{V}^{(n+1)}(x) = x + \beta \max \left\{ \mathcal{V}^{(n)} \left(\mathcal{F}(x,0) \right), \mathcal{V}^{(n)} \left(\mathcal{F}(x,1) \right) - \frac{\alpha}{\beta} x \right\}$$

STEP 2

$$\mathcal{V}(\mathcal{F}(x^*,0)) = \mathcal{V}(\mathcal{F}(x^*,1)) - \frac{\alpha}{\beta}x^*$$

Optimal threshold vs discount factor

Conclusion

First principles approach to QS using optimal control

Simple notions and tools from Economics

Public-goods, public-benefit, local cost, investment, etc...

Main result

Optimality of threshold policy

1. Closed form when $\alpha=0$

2. Numerical when $\alpha > 0$

Future work

Signal & enzyme dynamics

$$s[n] = (1 - \gamma_s)s[n - 1] + x[n](1 + \sigma_s u[n])$$

$$e[n] = (1 - \gamma_e)e[n - 1] + x[n]\sigma_e u[n]$$

Instantaneous cost delayed benefit

$$\lambda[n] = \rho - cu[n]$$

$$\kappa[n+1] = \kappa_0 + (\kappa_1 - \kappa_0)\mathbf{1}(e[n] \ge \tau)$$

Validate results using experimental data

Future work

$$s[n] = (1 - \gamma_s)s[n - 1] + x[n](1 + \sigma_s u[n])$$

$$e[n] = (1 - \gamma_e)e[n - 1] + x[n]\sigma_e u[n]$$

Instantaneous cost delayed benefit

$$\lambda[n] = \rho - cu[n]$$

$$\kappa[n+1] = \kappa_0 + (\kappa_1 - \kappa_0)\mathbf{1}(e[n] \ge \tau)$$

Validate results using experimental data

To be continued...

Trivial policies

$$\mathcal{U}^{\text{off}}(x) = 0$$

$$\mathcal{U}^{\text{on}}(x) = 1$$

$$\mathcal{U}^{\mathrm{on}}(x) = 1$$

Trivial policies

$$\alpha = 0.1$$

$$\mathcal{U}^{\text{off}}(x) = 0$$

$$\mathcal{U}^{\text{on}}(x) = 1$$

x_0	β	$\mathcal{V}_{ ext{off}}$	$\mathcal{V}_{ ext{on}}$
0.01	0.5	0.1108	0.0356
5	0.5	13.5889	12.0276
0.01	0.9	37.0031	21.9538
5	0.9	92.2152	107.7870

There should be a transition from OFF to ON