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Outline

•  Context and motivation: 
1. Collision channel model 
2. Previous work 

•  Problem formulation 
•  Our main results 

1. Existence of solutions 
2. Symmetry of optimal thresholds 
3. Convergence of a Lloyd-Max type algorithm 

•  Future work and open problems
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The collision channel

Simplified model of interference: 

• each DM decides to transmit or not 
• more than 1 transmission results in a collision 

• no transmissions results in an erasure

J (U1, . . . ,UN , E) = E
"

NX

i=1

(Xi � X̂i)
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Our previous work on the collision channel

collision
channel

...

S1

S2

S3

SN

Y

X1

X2

X3

XN

2

64
X̂1
...

X̂N

3

75

U1

U2

U3

UN

E

1. Optimal policies have a deterministic threshold structure 
2. Structural result holds for any distribution

[Vasconcelos and Martins - Allerton ’13]
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threshold policy

U(x) =
⇢

0 a  x  b

1 otherwise



Problem formulation

J (U , E) = E[(X � X̂)2] + ⇢Pr(U = 1)

communication cost
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Problem formulation

Minimize:

J (a, b, x̂?, x̂C) =

Z

[a,b]
(x� x̂?)

2
fX(x)dx+

Z

R̄\[a,b]
[�(x� x̂C)

2 + ⇢]fX(x)dx

U(x) =
⇢

0 a  x  b

1 otherwise

6binary quantization problem
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Why is this problem relevant? 

1. New channel model for networked control 
2. Collisions cause the lack of symmetry of optimal thresholds 

3. Building block for other decentralized estimation problems

Collision channel

1.
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1. The packet-drop channel is a special case when  
2. The collision channel is widely used in wireless communications  

? = C



Existence of optimal thresholds

J (a, b, x̂?, x̂C) =

Z

[a,b]
(x� x̂?)

2
fX(x)dx+

Z

R̄\[a,b]
[�(x� x̂C)

2 + ⇢]fX(x)dx

minimize J (a, b, x̂?, x̂C)

subject to a  b

x 2 [a⇤, b⇤] , (x� x̂?)
2  �(x� x̂C)

2 + ⇢

necessary optimality condition

Define a new cost:

a(x̂), b(x̂) , 1

1� �

h
(x̂? � �x̂C)±

p
�(x̂? � x̂C)2 + (1� �)⇢)

i

Jq(x̂) , J (a(x̂), b(x̂), x̂?, x̂C)

minimize Jq(x̂)
main mathematical object 

of this talk

x̂ , (x̂?, x̂C)

8



Existence of optimal thresholds

Provided that 0 < ⇢ < +1, the global minimizer of Jq(x̂) exists.

Theorem 1:

Sketch of Proof:

1. The cost function is continuous on  

2. There exists a point        such that:

R2

x̂

?

Coercivity:

Jq(x̂
?)  Jq(x̂) as kx̂k ! +1

Jq(x̂) ! +1 as kx̂k ! +1
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Existence of optimal thresholds

0 < ⇢ < +1

The global minimum must exist
⌅

There exists a symmetric policy that outperforms  
the always-transmit and never-transmit

degenerate policies.  
Step 1:  

U(x) ⌘ 1

U(x) ⌘ 0

J (�1,+1, x̂?, x̂C) = �(�2 + x̂

2
C) + ⇢ � ��

2 + ⇢

J (a, a, x̂?, x̂C) = �

2 + x̂

2
? � �

2

J
✓
�
r

⇢

1� �
,

r
⇢

1� �
, 0, 0

◆
< min{�2,��2 + ⇢}implies

Step 2:  

cost of the always and never-transmit policies

Jq(x̂) !

8
<

:

+1
�(�2 + x

2
C) + ⇢

�

2 + x

2
?

as kx̂k ! +1
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Asymmetry of optimal thresholds

Symmetric

Asymmetric

a = �b

a 6= �b

First order optimality condition: rJq(x̂
⇤) = 0

x̂

⇤
? = E [X|X 2 [a(x̂⇤), b(x̂⇤)]]

x̂

⇤
C = E [X|X /2 [a(x̂⇤), b(x̂⇤)]]

Centroid condition

corresponds to the best  
symmetric threshold policy

x̂ = (0, 0) always satisfies this condition
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When are the optimal thresholds
asymmetric?



Asymmetry of optimal thresholds

Theorem 2:

Sketch of Proof:

x̂ = (0, 0) is a local minimum then

⌅

G(�, ⇢) , M(�, ⇢)

2

+ (1� (1� �)M(�, ⇢))
@

@�
logM(�, ⇢)

M(�, ⇢) ,
Z p
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1��

�
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⇢
1��

fX(x)dx
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Asymmetric
G(

�
,⇢
)

r2Jq(0, 0) ⌫ 0 , G(�, ⇢)  1

2

related to det(r2Jq(0, 0))

If G(�, ⇢) > 1
2 the optimal thresholds are asymmetric.
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r2Jq(0, 0) ⌫ 0

Symmetric*



Modified Lloyd-Max and its convergence

F(x̂) ,


E [X|X 2 [a(x̂), b(x̂)]]
E [X|X /2 [a(x̂), b(x̂)]]

�

minimize
x̂2R2

J
q

(x̂)

rJq(x̂) = 0 x̂ = F(x̂)

x̂

(0) 6= (0, 0)

x̂

(k+1) = F(x̂(k)), k = 0, 1, . . .

Step 1   From         update the thresholds              and  

Step 2   Compute the centroids of the new quantization regions

x̂

(k)
a(x̂(k)) b(x̂(k))

Lloyd’s Map

Modified Lloyd Max

 !
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x̂?

x̂C

�`

`

`

�` C1

C2

|x̂?||x̂C|  �

2

Modified Lloyd-Max and its convergence

• Based on a result by                                      
Qiang Du - SIAM J. Num. Analysis '06 

• Find a compact set       that contains all the 
critical points of 

• Show that    

C
Jq(x̂)

F(C) ⇢ C

Theorem 3:

The modified Lloyd-Max algorithm is globally convergent to

a critical point of Jq(x̂).

Sketch of Proof:

⌅
C = C1 [ C2
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⇥
x̂

⇤
?

⇥
x̂

⇤
C

a

⇤ = �0.596
b

⇤ = 2.908 x

Examples
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⇥
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Conclusion and future work

• Solving the sequential case with channel output feedback 
• Proving the convergence to a global minimum 
• Control over the collision channel

Yn EnXn
SnUn

Dn

X̂n

Sensor

Collision 
Channel

Estimator

Yn�1
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• Existence of optimal thresholds 
• Sufficient condition for the asymmetry of optimal thresholds 
• Global convergence of the Modified Lloyd-Max algorithm 


