Optimal threshold strategies for

 estimation over the collision channel with a communication costMarcos Vasconcelos and Nuno Martins \{marcos, nmartins \}@umd.edu
Dept. of Electrical and Computer Engineering
University of Maryland, College Park
54th ${ }^{\text {th }}$ Conference on Decision and Control - Osaka, Japan
12-15-15

Outline

- Context and motivation:

1. Collision channel model
2. Previous work

- Problem formulation
- Our main results

1. Existence of solutions
2. Symmetry of optimal thresholds
3. Convergence of a Lloyd-Max type algorithm

- Future work and open problems

The collision channel

Simplified model of interference:

- each DM decides to transmit or not
- more than 1 transmission results in a collision
- no transmissions results in an erasure

$$
\mathcal{J}\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{N}, \mathcal{E}\right)=\mathbb{E}\left[\sum_{i=1}^{N}\left(X_{i}-\hat{X}_{i}\right)^{2}\right]
$$

Our previous work on the collision channel

1. Optimal policies have a deterministic threshold structure
2. Structural result holds for any distribution
[Vasconcelos and Martins - Allerton '13]

Problem formulation

$$
\begin{gathered}
X \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
D \sim \mathcal{B}(\beta) \\
X \Perp D
\end{gathered}
$$

$$
\left.\begin{array}{l}
U=0 \longleftrightarrow \\
\text { free }
\end{array}\right) \varnothing \varnothing
$$

Collision channel

$$
\mathcal{J}(\mathcal{U}, \mathcal{E})=\mathbb{E}\left[(X-\hat{X})^{2}\right]+\underbrace{\rho \operatorname{Pr}(U=1)}_{\text {communication cost }}
$$

Problem formulation

$$
\mathcal{U}(x)= \begin{cases}0 & a \leq x \leq b \\ 1 & \text { otherwise }\end{cases}
$$

$$
\mathcal{E}(y)= \begin{cases}x & y=x \\ \hat{x}_{\varnothing} & y=\varnothing \\ \hat{x}_{\mathfrak{C}} & y=\mathfrak{C}\end{cases}
$$

Minimize:

$$
\mathcal{J}\left(a, b, \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)=\int_{[a, b]}\left(x-\hat{x}_{\varnothing}\right)^{2} f_{X}(x) d x+\int_{\tilde{\mathbb{R}} \backslash[a, b]}\left[\beta\left(x-\hat{x}_{\mathfrak{C}}\right)^{2}+\rho\right] f_{X}(x) d x
$$

Why is this problem relevant?

1. New channel model for networked control
2. Collisions cause the lack of symmetry of optimal thresholds
3. Building block for other decentralized estimation problems

4. The packet-drop channel is a special case when $\varnothing=\mathfrak{C}$
5. The collision channel is widely used in wireless communications

Existence of optimal thresholds

$$
\mathcal{J}\left(a, b, \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)=\int_{[a, b]}\left(x-\hat{x}_{\varnothing}\right)^{2} f_{X}(x) d x+\int_{\overline{\mathbb{R}} \backslash[a, b]}\left[\beta\left(x-\hat{x}_{\mathfrak{C}}\right)^{2}+\rho\right] f_{X}(x) d x
$$

minimize $\mathcal{J}\left(a, b, \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)$
subject to $a \leq b$

$$
x \in\left[a^{*}, b^{*}\right] \Leftrightarrow\left(x-\hat{x}_{\varnothing}\right)^{2} \leq \beta\left(x-\hat{x}_{\mathfrak{C}}\right)^{2}+\rho
$$

necessary optimality condition

$$
a(\hat{x}), b(\hat{x}) \triangleq \frac{1}{1-\beta}\left[\left(\hat{x}_{\varnothing}-\beta \hat{x}_{\mathfrak{C}}\right) \pm \sqrt{\left.\beta\left(\hat{x}_{\varnothing}-\hat{x}_{\mathfrak{C}}\right)^{2}+(1-\beta) \rho\right)}\right] \quad \hat{x} \triangleq\left(\hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)
$$

Define a new cost: $\quad \mathcal{J}_{q}(\hat{x}) \triangleq \mathcal{J}\left(a(\hat{x}), b(\hat{x}), \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)$ of this talk

Existence of optimal thresholds

Theorem 1:

Provided that $0<\rho<+\infty$, the global minimizer of $\mathcal{J}_{q}(\hat{x})$ exists.

Coercivity:

$$
\begin{array}{r}
\mathcal{J}_{q}(\hat{x}) \rightarrow+\infty \quad \text { as }\|\hat{x}\| \rightarrow+\infty \\
\text { does not hold! }
\end{array}
$$

Sketch of Proof:

1. The cost function is continuous on \mathbb{R}^{2}
2. There exists a point \hat{x}^{\star} such that:

$$
\mathcal{J}_{q}\left(\hat{x}^{\star}\right) \leq \mathcal{J}_{q}(\hat{x}) \text { as }\|\hat{x}\| \rightarrow+\infty
$$

Existence of optimal thresholds

There exists a symmetric policy that outperforms
Step 1: the always-transmit and never-transmit degenerate policies.

$$
\begin{array}{cc}
\mathcal{U}(x) \equiv 1 & \mathcal{J}\left(-\infty,+\infty, \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)=\beta\left(\sigma^{2}+\hat{x}_{\mathfrak{C}}^{2}\right)+\rho \geq \beta \sigma^{2}+\rho \\
\mathcal{U}(x) \equiv 0 & \mathcal{J}\left(a, a, \hat{x}_{\varnothing}, \hat{x}_{\mathfrak{C}}\right)=\sigma^{2}+\hat{x}_{\varnothing}^{2} \geq \sigma^{2} \\
0<\rho<+\infty & \text { implies } \quad \mathcal{J}\left(-\sqrt{\frac{\rho}{1-\beta}}, \sqrt{\frac{\rho}{1-\beta}}, 0,0\right)<\min \left\{\sigma^{2}, \beta \sigma^{2}+\rho\right\}
\end{array}
$$

Step 2:

$$
\mathcal{J}_{q}(\hat{x}) \rightarrow\left\{\begin{array}{l}
+\infty \\
\beta\left(\sigma^{2}+x_{\mathfrak{C}}^{2}\right)+\rho_{,} \\
\sigma^{2}+x_{\varnothing}^{2}
\end{array} \quad \text { as } \quad\|\hat{x}\| \rightarrow+\infty\right.
$$

cost of the always and never-transmit policies
The global minimum must exist

Asymmetry of optimal thresholds

First order optimality condition: $\quad \nabla \mathcal{J}_{q}\left(\hat{x}^{*}\right)=0$

$$
\begin{aligned}
\hat{x}_{\varnothing}^{*} & =\mathbb{E}\left[X \mid X \in\left[a\left(\hat{x}^{*}\right), b\left(\hat{x}^{*}\right)\right]\right] \\
\hat{x}_{\mathfrak{C}}^{*} & \left.=\mathbb{E}\left[X \mid a\left(\hat{x}^{*}\right), b\left(\hat{x}^{*}\right)\right]\right]
\end{aligned}
$$

Centroid condition
$\hat{x}=(0,0)$ always satisfies this condition
corresponds to the best symmetric threshold policy

When are the optimal thresholds asymmetric?

Symmetric
$a=-b$

Asymmetric $\quad a \neq-b$

Asymmetry of optimal thresholds

Theorem 2:

If $\mathcal{G}(\beta, \rho)>\frac{1}{2}$ the optimal thresholds are asymmetric.

$$
\begin{aligned}
& \mathcal{G}(\beta, \rho) \triangleq \frac{\mathcal{M}(\beta, \rho)}{2}+(1-(1-\beta) \mathcal{M}(\beta, \rho)) \frac{\partial}{\partial \beta} \log \mathcal{M}(\beta, \rho) \\
& \text { related to } \operatorname{det}\left(\nabla^{2} \mathcal{J}_{q}(0,0)\right) \\
& \mathcal{M}(\beta, \rho) \triangleq \int_{-\sqrt{\frac{\rho}{1-\beta}}}^{\sqrt{\frac{\rho}{1-\beta}}} f_{X}(x) d x \\
& \text { Sketch of Proof: } \\
& \hat{x}=(0,0) \text { is a local minimum then } \nabla^{2} \mathcal{J}_{q}(0,0) \succeq 0 \\
& \nabla^{2} \mathcal{J}_{q}(0,0) \succeq 0 \Leftrightarrow \mathcal{G}(\beta, \rho) \leq \frac{1}{2}
\end{aligned}
$$

Modified Lloyd-Max and its convergence

$$
\begin{gathered}
\underset{\hat{x} \in \mathbb{R}^{2}}{\operatorname{minimize}} \mathcal{J}_{q}(\hat{x}) \\
\nabla \mathcal{J}_{q}(\hat{x})=0 \quad \longleftrightarrow \quad \hat{x}=\mathcal{F}(\hat{x})
\end{gathered}
$$

Lloyd's Map

$$
\mathcal{F}(\hat{x}) \triangleq\left[\begin{array}{l}
\mathbb{E}[X \mid X \in[a(\hat{x}), b(\hat{x})]] \\
\mathbb{E}[X \mid X \notin[a(\hat{x}), b(\hat{x})]]
\end{array}\right]
$$

Modified Lloyd Max

$$
\begin{aligned}
& \hat{x}^{(0)} \neq(0,0) \\
& \hat{x}^{(k+1)}=\mathcal{F}\left(\hat{x}^{(k)}\right), \quad k=0,1, \ldots
\end{aligned}
$$

Step 1 From $\hat{x}^{(k)}$ update the thresholds $a\left(\hat{x}^{(k)}\right)$ and $b\left(\hat{x}^{(k)}\right)$
Step 2 Compute the centroids of the new quantization regions

Modified Lloyd-Max and its convergence

Theorem 3:

The modified Lloyd-Max algorithm is globally convergent to a critical point of $\mathcal{J}_{q}(\hat{x})$.

Sketch of Proof:
 critical points of $\mathcal{J}_{q}(\hat{x})$

- Show that $\mathcal{F}(\mathbb{C}) \subset \mathbb{C}$

$$
\mathbb{C}=\mathbb{C}_{1} \cup \mathbb{C}_{2}
$$

Examples

$X \sim \mathcal{N}(0,1), \beta=0.1$ and $\rho=1$

Conclusion and future work

- Existence of optimal thresholds
- Sufficient condition for the asymmetry of optimal thresholds
- Global convergence of the Modified Lloyd-Max algorithm
- Solving the sequential case with channel output feedback
- Proving the convergence to a global minimum
- Control over the collision channel

