
1

Optimal sensor scheduling 
strategies for networked estimation

56th IEEE Conference on Decision and Control
12-15 December 2017 - Melbourne, Australia

Dept. of Electrical Engineering 
University of Southern California

mvasconc@usc.edu
Marcos Vasconcelos

Ashutosh Nayyar        Urbashi Mitra

1

www.terpconnect.umd.edu/~marcos

mailto:mvasconc@usc.edu


Body area networks

2

Body 
 Area  

Network

Network 
 Coordinator

Emergency 

Caregiver 

Medical Server 

Physician 
Accelerometer

ECG
EMG

GSR

1. Real-time monitoring
2. Feedback and interventions

1. Data heterogeneity
2. Communication constraints
3. Energy constraints

Goals Design challenges

System coupling bio-sensors on people and wireless networks 



Basic framework

3

At most one packet can be transmitted

Wireless
Network

S1

S2

SN

E1

E2

EN

···

···

X̂1

X̂2

X̂N

X1

X2

XN

XU

Y1

Y2

YN

U 2 {0, 1, 2, · · · , N}

Sensors Estimators

Scheduler

Communication constraint



Related work: Estimation

4

NETWORKED ESTIMATION UNDER CONTENTION-BASED MAC

2. PROBLEM FORMULATION
AND ASSUMPTIONS

We consider N scalar plants, each given by the
dynamics

dx (i)
t =ax (i)

t dt+dW (i)
t , i =1, . . .,N, (1)

where W (i)
t is a standard one-dimensional Wiener

process independent of x (i)
0 . The noise processes

W (i)
t and W ( j)

t are mutually independent for distinct
i, j ∈ {1, . . .,N}. For analytical tractability, we assume
that the states can be measured exactly, i.e. without
noise. We assume that sensor i samples the i th plant
state at times

s(i)
k =kh+!(i)

k , k∈ {0, . . .,∞},
where h is the common sampling period and ! is
a possible phase shift. We consider two particular
cases: synchronized sensing, where !(i)

k =0 for all k
and all i , and independent sensing, where !(i)

k are
independent random variables uniformly distributed on
the interval [0,h).

The samples are transmitted over a shared commu-
nications channel to the corresponding estimator
nodes, see Figure 1. The N transmitters contend for
the channel using a contention-based medium access
scheme. For the sake of simplicity we consider a
slotted system, where the time is divided into slots of

Figure 1. The estimation problem setup: the states of N
identical plants are estimated via samples transmitted over
a shared channel. Samples could be delayed and potentially

lost because of contention.

length L , which is also the nominal time needed to
transmit a data packet. After the sample is generated,
the transmitter waits a random number of slots before
its first transmission attempt: the waiting time is either
geometrically distributed (as in the classical slotted
ALOHA) or uniformly distributed (similar to CSMA).
The contention causes collisions that require retrans-
missions and give rise to random delays between the
sampling instants and the times when estimator nodes
receive their data. If a sensor has not been able to
deliver its data before a new sample is generated, it
attempts to transmit the new data and discards the old
one. Denote the sequence of times when the estimator
node i receives packets by {q (i)

j }∞j=0. Denote the delay

of the sample generated at s(i)
k−1 from sensor i by D(i)

k .

If the delay D(i)
k exceeds the sampling period h, the

sample is declared lost and the next sample from the
sensor will be attempted to be transmitted.

Assuming without any loss of typicality that the first
sample has not been transmitted successfully, we get:

q (i)
0 = s(i)

0 +D(i)
0 ,

q (i)
j+1 = inf {s(i)

k +D(i)
k |D(i)

k !h,s(i)
k +D(i)

k > q (i)
j },

j =
k∑

n=1
1{D(i)

n !h}!k.

At these reception times, the estimator i updates its
estimate waveform according to:

x̂ (i)
t = x (i)

q (i)
j

ea(t−q (i)
j ) ∀t ∈ [q (i)

j , q (i)
j+1).

We are interested in maintaining the estimates of the
process states so that the average distortion

Je"
1
N

N∑
i=1

limsup
M→∞

1
M

∫ M

0
E[(x (i)

t −x̂ (i)
t )

2]dt (2)

is minimized. The distortion depends not only on the
process time constant a and the noise intensities, but
also on the MAC delays and the loss probabilities, and
hence on the number of contending nodes. Our goal
is to develop an analytical model for these dependen-
cies: how the distortion depends on the process time
constants, average sampling rates, MAC delay and loss
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Fig. 1. Problem setup considered in this paper.

Plant and Sensor: The ith (1 ≤ i ≤ N) plant is described
by the following discrete linear time-invariant evolution:

xi(k + 1) = Aixi(k) + wi(k)

yi(k) = xi(k) (1)

where xi(k) ∈ Rn denotes the state vector, yi(k) ∈ Rm is the
output vector, wi(k) is the process noise assumed to be white
Gaussian with zero mean and covariance Rwi > 0. The initial
condition of the process xi(0) is assumed to be a Gaussian ran-
dom vector with zero mean and covariance Ri(0). The process
noises {wi(k)} and the initial condition xi(0) are assumed to
be mutually independent among all processes.

Remark 1: We focus on the case when the state is observed
solely for pedagogical ease. When the process state is not
observed, the development will be similar if we use, e.g., a
Kalman Filter at the sensor end as proposed in [40] and [41].

Estimator: At every time k, the ith estimator generates a
minimum mean squared error (MMSE) estimate for the state
xi(k) based on whatever information is available to it. Denote
the estimate for state xi(k) held by the ith estimator as x̂dec

i (k).
Since we assume that the sensors can observe the states directly,
at the ith estimator, we have

x̂dec
i (k)=

{
xi(k), if the i-th packet received
Aix̂dec

i (k − 1), otherwise
(2)

where Aix̂dec
i (k − 1) is the optimal estimate at the estimator if

the estimator did not receive any information at time k [40].
Comparator: The event-triggered algorithm is implemented

at the comparator. We consider a level or threshold based
scheme as proposed, e.g., in [18], [19], and [36]. The local event
for the ith plant is defined as

|ecomp
i (k)| > εi (3)

where ecomp
i (k) ! xi(k) − Aix̂dec

i (k − 1) and the threshold εi

is a given constant. Note that the comparator does not need
information from the estimator of x̂dec

i (k) since it is known by
the comparator that the estimate x̂dec

i (k) is calculated according
to (2).

Communication Network: We denote by {sk}k=0,1,2... the
packet sequence that is being transmitted across the network.

We denote by sk = i the event that the ith (1 ≤ i ≤ N) plant
is allowed to use the network at time k (k ≥ 0) and by sk = ∅
the event the network does not attempt to transmit packet from
any plant at time k. The communication network is modeled as
satisfying the following assumptions:

• A1: The network does not permit simultaneous transmis-
sions. Hence, only one plant can transmit information at
any time step.

• A2: The transmission delay is less than one time step
according to the clock by which the process evolves [35],
[36]. Further, every packet that is transmitted is received
successfully.

• A3: Each plant attempts to transmit information when-
ever an event is generated in an event-triggered imple-
mentation. When two or more plants send information
simultaneously, the network transmits the packet received
from the plant with highest priority [4] and the rest of the
packets are discarded. The priority orders of the plants can
be decided according to a collision resolution mechanism
(CRM) as was proposed in [4]. Let pi(k) ∈ Z be the
priority of the ith plant (1 ≤ i ≤ N) at time k (k ≥ 0).
We denote by pi(k) = µi ∈ {1, 2, . . .N} the event that
the ith plant has the µith priority among all the plants at
time k. To illustrate the priority assignment mechanisms,
we consider the case when the ith plant and the ℓth
plant (i ̸= ℓ) contend to use the network at time k, i.e.,
|ecomp

i (k)| > εi and |ecomp
ℓ (k)| > εl:

1) with a static priority mechanism, pi(k) ≡ µi and
pℓ(k) ≡ µℓ, where µi and µℓ (µi ̸= µℓ) have been
decided in advance;

2) with a random priority mechanism, µi < µℓ happens
with probability Pα at any time k;

3) with a dynamic priority mechanism, µi > µℓ if
|ecomp

ℓ (k)| > |ecomp
i (k)|.

• A4: In a time-triggered setting, TDMA is used to de-
termine which plant accesses the network at any time
step using a periodic access schedule that has been de-
cided in advance. As an example, a possible sequence
for {sk}k=0,1,2... under TDMA scheduling could be
{1, 2, . . . , N,∅, 1, 2, . . . , N,∅ . . .}.

• A5: In both time-triggered and event-triggered setups, the
network allows each plant to transmit at least once every
T time steps (T is assumed to be large but bounded) to
guard against the practical concerns of synchronization,
malfunctioning sensors and so on.

Remark 2: The medium access schemes described above
have been used in many applications. For instance, TDMA is
used in mobile communications and WirelessHART [42]. Static
and dynamic schedulers are used in control area network (CAN)
and random schedulers are used in Ethernet or wireless local
area network (WLAN), see, e.g., [43] and [44].

Performance Metrics: We are interested in analyzing the
performance of the system as measured by the following two
metrics.

1) The communication rate P , which is defined as the aver-
age probability for the network to transmit information at
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Fig. 2. The communication frequency and the error covariance of
Example 1 by using event-triggered method.

any time step. Also of interest is to evaluate the average
probability at which each plant attempts to transmit.

2) For the ith plant, the estimation performance is de-
fined as the average expected estimation error covariance
[26]–[28], [32]. Since there are N plants in the NCS, the
quality of estimate is measured by the aggregate error
covariance

J !
N∑

i=1

lim
t→∞

1

t

t∑

k=0

E
{
edec

i (k)
[
edec

i (k)
]⊤}

(4)

with edec
i (k) ! xi(k) −x̂dec

i (k) as the estimation error
for the ith (1 ≤i ≤N) plant.

B. An Illustrative Example

We present a simple example to illustrate the formulation.
The example also shows that time-triggered method may out-
perform event-triggered method with associated medium access
schemes (i.e., CRMs) described earlier.

Example 1: Suppose the dynamics for the ith plant (i = 1, 2 )
are given by equation (1) with A1 = 1 and A2 = 0.9. The
process noise {wi(k)} is white, zero mean, Gaussian with
covariance unity and the initial condition xi(0) is a normal
Gaussian random variable.

1) Event-Triggered Method: The event for the ith plant that
triggers information transmission is given by (3). We assume
that the network allows each plant to transmit at least once every
10 time steps; thus T = 10. The simulation results are given
in Fig. 2 by conducting 10 000 Monte Carlo experiments [45],
[46] and by setting ε1 = ε2. As shown in the top plot of Fig. 2,
the communication rates under various CRM are close to each
other for various values of εi. However, it can be seen from the
bottom plot of Fig. 2 that the qualities of the estimates under
various CRM are different from each other, especially when
the level εi is small, e.g., when εi ≤1. As the level εi gets
larger (i.e., when the information transmission becomes less
frequently), the communication rate will converge to the value

TABLE I
PERFORMANCE COMPARISON OF TIME-TRIGGERED AND

EVENT-TRIGGERED METHODS FOR EXAMPLE 1

Fig. 3. System Model for a Single Plant across a Dedicated Network. If
the state is observed, then x̂enc(k) = x(k).

of 0.2 and the quality of estimate will become progressively
worse.

2) Time-Triggered Method: We assume that each plant uses
the network periodically and that the two plants use the network
asynchronously. Since we do not consider a cost associated with
the utilization of the communication network, we focus on the
case when the communication rate (denoted by P ) is close to
one, e.g. P = 0.98 . The packets are transmitted through the
network according to the following sequence:

⎧
⎨

⎩1, 2 , 1, 2 , . . . , 1, 2 ,∅︸ ︷︷ ︸
50

, 1, 2 , 1, 2 , . . . , 1, 2 ,∅︸ ︷︷ ︸
50

, . . .

⎫
⎬

⎭ .

3) Comparison of Event-triggered and Time-Triggered
Methods: The comparison between time-triggered method
and event-triggered method is summarized in Table I. From
Table I and Fig. 2, we can make the following observations.
For the same communication rate P = 0.98 (i.e., the same
utilization of the network), the corresponding thresholds for sta-
tic, random and dynamic schedulers are different. Further, the
event-triggered method with static and random schedulers lead
to larger estimation error covariance than the time-triggered
method with TDMA. In other words, the time-triggered method
with TDMA outperforms the event-triggered method with static
and random schedulers. The event-triggered method with dy-
namic scheduler leads to smaller estimation error covariance
than time-triggered method only if εi ≤1. "

III. PRELIMINARY RESULTS-SINGLE PLANT
ACROSS A DEDICATED NETWORK

We begin with some preliminary results that outline our
method of deriving the communication rate and error covari-
ance analytically for event-triggered estimation by considering
the simple case of a single plant, see Fig. 3. These results may
be of independent interest and were presented first in [1]. The
subscript i for the different plants is dropped in this section.
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A1 A2

A3

Plant 1 Plant 2

Plant 3

Fig. 1. Multiple control loops are closed over a shared communication
medium. The controller in each loop may be co-located with either the
sensor (S) or the actuator (A).

Idle Busy

Control
event

Time T
elapsed

Fig. 2. Network state transitions. Control events may only be generated
in the idle state.

The sampling can be either time-triggered or event-triggered,
depending on the medium access scheme. After obtaining
a sample, the sensor tries to initiate a control event by
transmitting the value to the actuator. The network is however
a shared resource that only one control loop may access
at a time1. If two or more sensors attempt to transmit at
the exact same time, a resolution mechanism determines
who will gain access to the network. (The other nodes will
simply discard their samples.) Once access has been gained,
the network stays occupied for T seconds, corresponding to
the transmission delay from sensor to actuator. During this
interval, no new control events may be generated (see Fig. 2).

The controller in each loop may be co-located with either
the sensor or the actuator; the network delay is assumed
constant and known, so it does not matter which. The overall
goal is to minimize the total cost

J =
N

∑

i=1

Ji, (3)

where the performance of loop i is measured by the station-
ary state variance

Ji = lim
t→∞

1

t
E

∫ t

0

(xi(s))
2ds. (4)

In response to a sample taken at time ti,k, the actuator is
allowed to emit a Dirac pulse of size ui,k. It is clear (see [5])
that minimum variance is achieved by driving the expected
value of the state at time ti,k + T to zero, implying the
deadbeat control law

ui,k = −eaiT xi,k. (5)

1This is not true under FDMA. Under FDMA, we rather assume that each
control loop has access to its own private network with lower bandwidth.

The control signal generated by actuator i is hence given by
the pulse train

ui(t) =
∞
∑

k=0

δ
(

t − ti,k − T
)

ui,k. (6)

While it may seem unrealistic to allow Dirac controls, it
allows for a fair and straightforward comparison between
time-triggered and event-triggered control. The Dirac pulse
may be replaced by an arbitrary pulse shape of length no
longer than T at the expense of slightly more complicated
cost calculations.

III. EVALUATION OF COST

We here briefly review how to compute the cost (4) under
time-triggered and event-triggered sampling with a delay and
minimum inter-event interval T . For more details, see [1],
[7], [5]. For clarity, we here drop the plant index i.

A. Time-Triggered Sampling

Under time-triggered sampling, the stationary variance
(4) can be calculated analytically. The sampling instants tk
are known a-priori and do not depend on the plant state,
which will be normal distributed at all times. The (possibly
irregularly) sampled closed-loop system becomes

xk+1 = wk, (7)

where {wk}∞k=0 are independent, zero-mean Gaussian vari-
ables with variance P (tk+1 − tk), where

P (t) =

{

σ2 e2at
−1

2a
, a ≠ 0,

σ2t, a = 0.
(8)

(Note that the delay does not affect the state distribution at
the sampling instants.) Sampling the cost function gives

E

∫ tk+1

tk

x2ds = Q(T ) E(xk)2 + Jv(tk+1 − tk), (9)

where

Q(T ) =

{

e2aT
−1

2a
, a ≠ 0,

T, a = 0
(10)

is the state weight due to delay, while

Jv(t) =

{

e2at
−2at−1
4a2 , a ≠ 0,

t2

2
, a = 0

(11)

accounts for the inter-sample noise (see e.g. [1]). Finally, we
know that E x2(tk) = P (tk − tk−1). Using the expressions
above, it is straightforward to evaluate the cost under any
static cyclic schedule.

B. Event-Triggered Sampling

Under event-triggered sampling, control events may only
be generated when the network is idle and |x(t)| ≥ r, where
r is the event detection threshold. The state will no longer
be Gaussian, which complicates the calculation of Ex2(tk).
A useful and realistic approximation is to assume that the
sensor does not measure x continuously, but rather uses
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a distributed sample-path based algorithm is proposed. In con-
trast to previous work [18], a dual decomposition approach re-
lated to utility maximization of random access algorithms [20]–
[23] is chosen to study the underlying scheduling problem.

In our work, the dual price mechanism forces each subsystem
to adjust their event-triggering thresholds according to the total
transmission rate. By using a time-scale separation approach,
stability and convergence properties of the distributed event-
triggered scheme are established in terms of recurrence and
almost-sure convergence, respectively. Numerical simulations
are conducted to illustrate the effectiveness of the obtained
algorithm.

The remaining part of this article is structured as follows.
In Section II, we introduce the system model and describe the
problem statement. Section III develops the adaptive event-
triggered controller and discusses its properties. The efficiency
of the proposed approach is illustrated in Section IV by numer-
ical simulations.

Notation: In this paper, the operator (·)T and tr[·] denote the
transpose and trace operator, respectively. The Euclidean norm
is denoted by ∥ · ∥2. The variable P denotes the probability
measure on the abstract sample space denoted by Ω. The
expression F , P–a.s. denotes that the event F occurs almost
surely w.r.t. probability measure P. The expectation operator is
denoted by E[·] and the conditional expectation is denoted by
E[·|·]. The relation x ∼ N (0, X) denotes a Gaussian random
variable with zero-mean and covariance matrix X . The non-
negative real line is denoted by R≥ 0. The operator [·]+ denotes
the projection onto R≥ 0, i.e., [·]+ = max{0, ·}. The operator
1{·} denotes the indicator function. The sequence of a discrete-
time signal xi

k is denoted by {xi
k}k = {xi

0, x
i
1, . . .}. The trun-

cated sequence up to time k of a signal {xi
k}k, is denoted

by Xi
k, i.e., Xi

k = {xi
0, . . . , x

i
k}. Let the complement of a set

A be denoted by Ac. If not otherwise stated, a variable with
superscript i indicates that it belongs to subsystem i.

II. PROBLEM STATEMENT

We consider the cyber-physical control system illustrated in
Fig. 1 with N independent control subsystems whose feedback
loops are connected through a shared communication network.
A control subsystem i consists of a process Pi, a controller Ci

that is implemented at the actuator and a scheduler Si imple-
mented at the sensor.

A. Process Model

The process Pi to be controlled within each subsystem i is
given by a stochastic linear system with state xi

k taking values
in Rni and evolving by the following difference equation:

xi
k+1 = Aixi

k + Biui
k + wi

k (1)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi . The control input ui
k is

taking values in Rmi . The system noise wi
k takes values in Rni

at each k and is i.i.d. with wi
k ∼ N (0, Ci). The initial states xi

0,
i ∈ {1, . . . , N}, have a distribution whose density function is

Fig. 1. System model of the cyber-physical system with N control systems
closed over a shared communication network with processes P1, . . . , PN ,
schedulers S1, . . . , SN and controllers C1, . . . , CN . The network manager
broadcasts the variable λ̂k to all subsystems.

symmetric around its mean value E[xi
0] and has a finite second

moment.
It is assumed that the sensor node is capable to acquire

full state information xk at time k. The control input may
depend on the complete observation history of the received
signal at the controller. Furthermore, the control inputs need
not to be constant in between of successful transmissions, but
are allowed to be time-varying.

B. Communication Model

In this work, we use a generic communication model that is
inspired by the idealized model for CSMA in [21], [24], [25].

At any time k, the scheduler Si situated at the sensor decides,
whether a transmission slot should be requested to transmit the
current state of subsystem i to the controller Ci. Due to band-
width limitations the number of transmission slots per time step
denoted by c is constrained and schedulers must be designed at
the sensors that judge the importance of transmitting an update
to the corresponding controller. In order to obtain a non-trivial
problem setting, we assume that

1≤ c < N.

We make the following simplifying assumptions on the
CSMA model: i) sensing the carrier is instantaneous, ii) there
are no hidden nodes, iii) the backoff intervals are exponentially
distributed with homogeneous backoff exponents, iv) the mean
backoff time is negligible with respect to the length of a
transmission slot, and v) data packets are discarded after c
retransmission trials.

It should be noted that due to the assumptions i) and ii),
no packet collisions may occur [21]. The assumptions iii)–v)
are tailored to the discrete-time nature of the control process.
In particular, assumption v) reflects the idea of the try-once
discard (TOD) protocol introduced in [26], which discards
outdated state information. Despite of these assumptions that
yield an idealized communication model, they capture the main

Molin and Hirche, TAC 2014
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features of a generic contention-based transmission mechanism
and enable the analysis of the aggregate cyber-physical con-
trol system. Though the focus of this article is on wireless
communication, it is remarked that the presented model is also
applicable for other shared resource constraints that go beyond
bandwidth limitations.

The communication phase during time step k can be sketched
as follows. At the beginning of this phase, all subsystems
that request for transmission select a random backoff interval
implying that the subsystem with the smallest value is granted
to transmit. The remaining subsystems then wait until the
transmission is accomplished and back off for another time.
This procedure is repeated at most c times due to assumption v).
Due to the above assumptions, all requesting subsystems can
transmit during time step k, P–a.s., if the number of requests
does not exceed c. On the other hand, if there are more
requests than available transmission slots at time k, then the
communication system effectively selects c subsystems that
may transmit information. All other subsystems are blocked
and are informed instantaneously that their request has been
rejected. As the backoff exponent is assumed to be homo-
geneous among subsystems, the communication model does
not prioritize subsystems, i.e., the subsystems are chosen with
identical probability. The request for a transmission of the ith
subsystem at time k is indicated by the variable δi

k which takes
the values

δi
k =

{
1 request for transmission
0 idle.

The resolution of contention represented by the random vari-
able qi

k is defined as

qi
k =

{
1 allow transmission
0 block transmission.

By taking the above assumptions for the CSMA scheme into
account, the variable qi

k can be modeled as a probability distri-
bution conditioned on the requests δi

k and obeys

P
[
qi
k = 1|δi

k, i ∈ {1, . . . , N}
]

=

{
1

∑N
i=1 δ

i
k ≤ c

c∑N

i=1
δi

k

otherwise.

(2)

for subsystem i with δi
k = 1and

q1
k + · · · + qN

k = c, P− a.s.

when δ1
k + · · · + δN

k ≥ c. In case of δi
k = 0, qi

k is set to zero.
The received data at the controller Ci at time k is denoted by zi

k
and is defined by

zi
k =

{
xi

k δi
k = 1∧ qi

k = 1
∅ otherwise.

(3)

Finally, we note that the scheduler Si knows the value of qi
k−1

at time k due to the assumptions on the communication model
that exclude packet collisions.

C. Social Cost Optimization

In our system setting, we assume that each subsystem i with
i ∈ {1, . . . , N} has an individual cost function J i given by the
linear quadratic average-cost criterion

J i = lim sup
T→∞

1

T
E

[
T−1∑

k=0

(
xi

k

)T
Qi

xxi
k +

(
ui

k

)T
Qi

uui
k

]
. (4)

The weighting matrix Qi
x is semi-positive definite and Qi

u

is positive definite for each i ∈ {1, . . . , N}. In the case of
scalar subsystems, we also allow Qi

u to be zero when Qi
x > 0.

We assume that the pair (Ai, Bi) is stabilizable and the pair

(Ai, Qi,1/2
x ) is detectable with Qi

x = (Qi,1/2
x )

T
Qi,1/2

x .
It is assumed that the sensor and the controller of the ith sub-

system merely have knowledge of the local system parameters,
i.e., Ai, Bi, Ci, the distribution of x0, and Qi

x, Qi
u of (4).

As it will take a central role in the subsequent analysis, we
define the individual request rate ri of the ith subsystem by

ri = lim sup
T→∞

1

T
E

[
T−1∑

k=0

δi
k

]
(5)

which also has the form of an average-cost criterion. With the
definition of the individual request rate in (5), the total average
request rate is defined as

y =
N∑

i=1

ri. (6)

The control law γi = {γi
0, γ

i
1, . . .} reflecting the behavior of

controller Ci is described by causal mappings γi
k of the past

observations for each time step k, i.e.,

ui
k = γi

k

(
Zi

k

)

where Zi
k is the observation history until time k of subsystem

i. We distinguish between two classes of schedulers πi =
{πi

0,π
i
1, . . .} resulting from two types of network managers.

In the first case, the network manager broadcasts a fixed
parameter λ at the beginning and the static event-triggered
scheduler is then given by

δi
k = πi,λ

k

(
Xi

k, Qi
k−1

)

where Xi
k is the state history of subsystem i and the variable

Qi
k−1 = {qi

0, . . . , q
i
k−1} is the sequence of received acknowl-

edgements at time k. It should be remarked that we will usually
omit λ for notational convenience. In the second case, the
network parameter λ̂k is allowed to change over time k and
the scheduler adapts its law w.r.t. to λ̂k, i.e.,

δi
k = πi,λ̂k

k

(
Xi

k, Qi
k−1

)
.

The parameter λ̂k itself is given by a causal mapping fk of the
past transmission history, i.e.,

λ̂k = fk
(
δ1
0 , . . . , δN

0 , . . . , δ1
k−1, . . . , δ

N
k−1

)
.

S1 S2

S3

A1 A2

A3

Plant 1 Plant 2

Plant 3

Fig. 1. Multiple control loops are closed over a shared communication
medium. The controller in each loop may be co-located with either the
sensor (S) or the actuator (A).

Idle Busy

Control
event

Time T
elapsed

Fig. 2. Network state transitions. Control events may only be generated
in the idle state.

The sampling can be either time-triggered or event-triggered,
depending on the medium access scheme. After obtaining
a sample, the sensor tries to initiate a control event by
transmitting the value to the actuator. The network is however
a shared resource that only one control loop may access
at a time1. If two or more sensors attempt to transmit at
the exact same time, a resolution mechanism determines
who will gain access to the network. (The other nodes will
simply discard their samples.) Once access has been gained,
the network stays occupied for T seconds, corresponding to
the transmission delay from sensor to actuator. During this
interval, no new control events may be generated (see Fig. 2).

The controller in each loop may be co-located with either
the sensor or the actuator; the network delay is assumed
constant and known, so it does not matter which. The overall
goal is to minimize the total cost

J =
N

∑

i=1

Ji, (3)

where the performance of loop i is measured by the station-
ary state variance

Ji = lim
t→∞

1

t
E

∫ t

0

(xi(s))
2ds. (4)

In response to a sample taken at time ti,k, the actuator is
allowed to emit a Dirac pulse of size ui,k. It is clear (see [5])
that minimum variance is achieved by driving the expected
value of the state at time ti,k + T to zero, implying the
deadbeat control law

ui,k = −eaiT xi,k. (5)

1This is not true under FDMA. Under FDMA, we rather assume that each
control loop has access to its own private network with lower bandwidth.

The control signal generated by actuator i is hence given by
the pulse train

ui(t) =
∞
∑

k=0

δ
(

t − ti,k − T
)

ui,k. (6)

While it may seem unrealistic to allow Dirac controls, it
allows for a fair and straightforward comparison between
time-triggered and event-triggered control. The Dirac pulse
may be replaced by an arbitrary pulse shape of length no
longer than T at the expense of slightly more complicated
cost calculations.

III. EVALUATION OF COST

We here briefly review how to compute the cost (4) under
time-triggered and event-triggered sampling with a delay and
minimum inter-event interval T . For more details, see [1],
[7], [5]. For clarity, we here drop the plant index i.

A. Time-Triggered Sampling

Under time-triggered sampling, the stationary variance
(4) can be calculated analytically. The sampling instants tk
are known a-priori and do not depend on the plant state,
which will be normal distributed at all times. The (possibly
irregularly) sampled closed-loop system becomes

xk+1 = wk, (7)

where {wk}∞k=0 are independent, zero-mean Gaussian vari-
ables with variance P (tk+1 − tk), where

P (t) =

{

σ2 e2at
−1

2a
, a ≠ 0,

σ2t, a = 0.
(8)

(Note that the delay does not affect the state distribution at
the sampling instants.) Sampling the cost function gives

E

∫ tk+1

tk

x2ds = Q(T ) E(xk)2 + Jv(tk+1 − tk), (9)

where

Q(T ) =

{

e2aT
−1

2a
, a ≠ 0,

T, a = 0
(10)

is the state weight due to delay, while

Jv(t) =

{

e2at
−2at−1
4a2 , a ≠ 0,

t2

2
, a = 0

(11)

accounts for the inter-sample noise (see e.g. [1]). Finally, we
know that E x2(tk) = P (tk − tk−1). Using the expressions
above, it is straightforward to evaluate the cost under any
static cyclic schedule.

B. Event-Triggered Sampling

Under event-triggered sampling, control events may only
be generated when the network is idle and |x(t)| ≥ r, where
r is the event detection threshold. The state will no longer
be Gaussian, which complicates the calculation of Ex2(tk).
A useful and realistic approximation is to assume that the
sensor does not measure x continuously, but rather uses
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The mapping fk represents the adaptation mechanism of the
network manager to the current traffic and will be specified later
in more detail. It should be noted that the network manager
is implemented in a centralized manner, but it depends solely
on the requests of the subsystems in the case of adaptive
scheduling.

The design objective is to find the optimal control laws γi and
optimal scheduling laws πi, i ∈ {1, . . . , N} that minimize the
social cost given as an average cost criterion. The social cost is
defined by the sum of the individual costs J i of each subsystem.
Therefore, the optimization problem can be summarized as
follows:

min
γ1,...,γN

π1,...,πN

N∑

i=1

J i. (7)

It should be noted that optimization problems with an
average-cost criterion as given above are underselective [27].
This is because it does not matter how well the policy works
at the beginning. Only its stationary behavior determines its
cost. Therefore, there may exist two policies, which differ
completely with respect to their performance in the first k
time steps, but eventually converge to the same stationary
behavior and therefore yield the same average cost. Hence, the
optimization problem does not distinguish between these two
policies. For the purpose of our work, this feature turns out to be
an advantage as it allows us to design an adaptation mechanism
for each subsystem that learns the optimal transmission rate
over time.

III. ADAPTIVE EVENT-TRIGGERED SCHEDULING

This section focuses on the synthesis and analysis of the
cyber-physical system that addresses the solution of the op-
timization problem (7). Section III-A introduces a problem
relaxation to solve problem (7) and is followed by the char-
acterization of optimal solutions of the relaxed problem in
Section III-B. In Section III-C, ideas from dual decomposition
and adaptive MDPs are then used to develop a distributed ap-
proach that solves the relaxed optimization problem introduced
in Section III-A. A Lagrange approach is taken to formulate
the dual problem of the relaxed problem, which enables us
to derive a dual price exchange mechanism that broadcasts a
price for the resource to each subsystem. An adaptive sample-
path algorithm is proposed in Section III-D that estimates
the average total transmission rate to approximate the pricing
gradient. Section III-E and F address convergence and stabil-
ity properties of the adaptive event-triggered scheme, respec-
tively. The implementation of the algorithm is discussed in
Section III-G.

A. Problem Relaxation

Although the coupling between subsystems is solely caused
by the resource limitation, determining the optimal event-based
control system that solves (7) is a hard problem due to the
distributed information pattern. It is shown in [28] that optimal
stochastic control problems with distributed information pat-

tern are generally hard to solve, even if linear dynamics and
quadratic cost functions are considered. Besides the distributed
information pattern, the impact of the bandwidth limitation
is another complicating factor. In contrast to time-triggered
scheduling schemes, distributed event-triggered scheduling is
exposed to contention among subsystems that share the re-
source and it is in general not possible to guarantee that a
request for the resource will be approved a priori.

Therefore, we introduce a problem relaxation in order to
obtain a feasible method to find the event-triggered controllers
that minimize the social cost in (7). This approach that is an
approximation of the original problem will be the basis for
our scheduling and control design. The motivation for such
relaxation will be discussed at the end of the section. Moreover,
the stability analysis of the resulting system is carried out by
taking the impact of contention into account.

In the following, the hard constraint of a maximum of c
transmissions at each time k is weakened and we require merely
that the total average request rate is upper bounded by c. The
relaxed optimization problem is then given by the following
constrained MDP:

min
γ1,...,γN

π1,...,πN

N∑

i=1

J i s.t. y ≤ c. (8)

As this approach does not consider contention among subsys-
tems, the received signal at the controller in the design stage is
assumed to be

zi
k =

{
xi

k δi
k = 1

∅ otherwise.
(9)

Aside from facilitating the optimization problem (7), the
motivation for the above approach is twofold.

First, the solution of the relaxed problem (8) is asymptoti-
cally optimal with regard to the optimization problem (7) when
the number of subsystems N and the capacity c grow towards
infinity. Because of the law of large numbers, it can be reasoned
that the average rate ri and the empirical mean within one time
step coincide almost surely in the stationary regime as N → ∞
while c/N is kept constant [18]. This implies that the hard
transmission constraint considered in the original optimization
problem (7) is satisfied in the limit. As the relaxed problem
attains a lower bound with respect to the cost of problem (7),
we conclude that the solution of (8) is asymptotically optimal.

Second, we give another argument that justifies the absence
of contention among subsystems assumed in the above ap-
proach. Because of the underselective nature of the average-
cost criterion, we are primarily interested in the stationary
behavior of the overall system. Assuming that the scheduling
and control policies are stationary, the impact of contention
on an individual subsystem i in the stationary regime can be
aggregated as a Bernoulli-distributed qi

k with a fixed blocking
probability. It has been shown in [29] that the form of the
optimal solution does not alter when introducing a Bernoulli-
distributed blocking process. Furthermore, the work in [29]
demonstrates quantitatively through numerical simulations that
the optimal solution is comparatively insensitive with respect to
the blocking probability when assuming a fixed price for using

2

sampling is receiving increased attention. The efforts within
this area may coarsely be divided into the two paradigms of
event- and self-triggered control. In event-triggered control,
e.g., [7], [8], [9], [10], [11], [12], [13], [14], [15] the sen-
sor continuously monitors the process state and generates a
sample when the state violates some predefined condition.
Self-triggered control, e.g., [4], [16], [17], [18], utilizes a
model of the system to predict when a new sample needs
to be taken in order to fulfill some pre-defined condition. A
possible advantage of event- over self-triggered control is that
the continuous monitoring of the state guarantees that a sample
will be drawn as soon as the design condition is violated, thus
resulting in an appropriate control action. The self-triggered
controller will instead operate in open-loop between samples.
This could potentially be a problem as disturbances to the
process between samples cannot be attenuated. This problem
may however be avoided by good choices of the inter-sampling
times. The possible advantage of self- over event-triggered
control is that the transmission time of sensor packets is known
a-priori and hence we may schedule them, enabling sensors
and transmitters to be put to sleep in-between samples and
thereby save energy.
The research area of joint design of control and communica-

tion is currently very active, especially in the context of event-
triggered control. In [19] a joint optimization of control and
communication is solved using dynamic programming, placing
a communication scheduler in the sensor. In [20], [21] and [22]
the control law and event-condition are co-designed to match
performance of periodic control using a lower communication
rate. In [23] this idea is extended to decentralized systems.
The use of predictive control is also gaining popularity within
the networked control community [24], [25], [26], [27]. In
[28] predictive methods and vector quantization are used to
reduce the controller to actuator communication in multiple
input systems. In [29] model predictive control (MPC) is used
to design multiple actuator link scheduling and control signals.
There have also been developments in using MPC under
event-based sampling. In [30] a method for trading control
performance and transmission rate in systems with multiple
sensors is given. In [31] an event-based MPC is proposed
where the decision to re-calculate the control law is based
on the difference between predicted and measured states.
The problem addressed in the present paper, namely the

joint design of a self-triggering rule and the appropriate control
signal using MPC has been less studied than its event-triggered
counterpart. In [32] an approach relying on an exhaustive
search which utilizes sub-optimal solutions giving the control
policy and a corresponding self-triggering policy is presented.
In [33] it is suggested that a portion of the open loop trajectory
produced by the MPC should be applied to the process. The
time between re-optimizations is then decided via a self-
triggering approach.
The approach taken in this paper differs from the above

two in that the open loop cost we propose the MPC to solve
is designed to be used in an adaptive sampling context. Further
our extension to handle multiple loops using a self-triggered
MPC is new. So is the guarantee of conflict free transmissions.
The outline of the paper is as follows. In Section II

the self-triggered network scheduling and control problem is
defined and formulated as a receding horizon control problem.
Section III presents the open-loop optimal control problem for
a single loop, to be solved by the receding horizon controller.
The optimal solution is presented in Section IV. Section V
presents the receding horizon control algorithm for a single
loop in further detail and gives conditions for when it is stabi-
lizing. The results are then extended to the multiple loop case
in Section VII where conditions for stability and conflict free
transmissions are given. The proposed method is explained and
evaluated on simulated examples in Section VIII. Concluding
discussions are made in Section IX.

II. SELF-TRIGGERED NETWORKED CONTROL
ARCHITECTURE

We consider the problem of controlling s ≥ 1 processes
P1 through Ps over a shared communication network as in
Fig. 1. The processes are controlled by the controller C which
computes the appropriate control action and schedule for each
process. Each process Pℓ is given by a linear time-invariant
(LTI) system

xℓ(k + 1) = Aℓxℓ(k) +Bℓuℓ(k),

xℓ(k) ∈ Rnℓ , uℓ(k) ∈ Rmℓ .
(1)

The controller works in the following way: At time k = kℓ,
sensor Sℓ transmits a sample xℓ(kℓ) to the controller, which
then computes the control signal uℓ(kℓ) and sends it to the
actuator Aℓ. Here ℓ ∈ {1, 2, . . . , s} is the process index. The
actuator in turn will apply this control signal to the process
until a new value is received from the controller. Jointly with
deciding uℓ(kℓ) the controller also decides how many discrete
time steps, say Iℓ(kℓ) ∈ N+ ! {1, 2, . . .}, it will wait before
it needs to change the control signal the next time. This value
Iℓ(kℓ) is sent to the Network Manager which will schedule the
sensor Sℓ to send a new sample at time k = kℓ + Iℓ(kℓ). To
guarantee conflict free transmissions on the network, only one
sensor is allowed to transmit at every time instance. Hence,
when deciding the time to wait Iℓ(kℓ), the controller must
make sure that no other sensor Sq , q ≠ ℓ, already is scheduled
for transmission at time k = kℓ + Iℓ(kℓ).
We propose that the controller C should be implemented as

a receding horizon controller which for an individual loop ℓ
at every sampling instant k = kℓ solves an open-loop optimal
control problem. It does so by minimizing the infinite-horizon
quadratic cost function

∞
∑

l=0

(

∥xℓ(kℓ + l)∥2Qℓ
+ ∥uℓ(kℓ + l)∥2Rℓ

)

subject to the user defined weights Qℓ and Rℓ, while taking
system dynamics into account. In Section III we will embellish
this cost function, such that control performance, inter sam-
pling time and overall network schedulability also are taken
into consideration.

Remark 1. The focus is on a networked system where the
network manager and controller are integrated in the same
unit. This means, that the controller can send the schedules,
that contain the transmission times of the sensors, directly to
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Multiple Loop Self-Triggered Model Predictive
Control for Network Scheduling and Control

Erik Henriksson, Daniel E. Quevedo, Edwin G.W. Peters, Henrik Sandberg, Karl Henrik Johansson

Abstract—We present an algorithm for controlling and
scheduling multiple linear time-invariant processes on a shared
bandwidth limited communication network using adaptive sam-
pling intervals. The controller is centralized and computes at
every sampling instant not only the new control command for a
process, but also decides the time interval to wait until taking
the next sample. The approach relies on model predictive control
ideas, where the cost function penalizes the state and control
effort as well as the time interval until the next sample is
taken. The latter is introduced in order to generate an adaptive
sampling scheme for the overall system such that the sampling
time increases as the norm of the system state goes to zero.
The paper presents a method for synthesizing such a predictive
controller and gives explicit sufficient conditions for when it is
stabilizing. Further explicit conditions are given which guarantee
conflict free transmissions on the network. It is shown that
the optimization problem may be solved off-line and that the
controller can be implemented as a lookup table of state feedback
gains. Simulation studies which compare the proposed algorithm
to periodic sampling illustrate potential performance gains.

Index Terms—Predictive Control; Networked Control Systems;
Process Control; Stability; Scheduling; Self-triggered Control.

I. INTRODUCTION

Wireless sensing and control systems have received in-
creased attention in the process industry over the last years.
Emerging technologies in low-power wake-up radio enables
engineering of a new type of industrial automation systems
where sensors, controllers and actuators communicate over a
wireless channel. The introduction of a wireless medium in
the control loop gives rise to new challenges which need to
be handled [1]. The aim of this paper is to address the problem
of how the medium access to the wireless channel could
be divided between the loops, taking the process dynamics
into consideration. We investigate possibilities to design a
self-triggered controller, that adaptively chooses the sampling
period for multiple control loops. The aim is to reduce the
amount of generated network traffic, while maintaining a
guaranteed level of performance in respect of driving the initial
system states to zero and the control effort needed.

Consider the networked control system in Fig. 1, which
shows how the sensors and the controller are connected
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Network
Network
Manager

C

P1 S1A1

Ps SsAs

Fig. 1. Actuators A and processes P are wired to the controller C while the
sensors S communicate over a wireless network, which in turn is coordinated
by the Network Manager.

through a wireless network. The wireless network is controlled
by a Network Manager which allocates medium access to
the sensors and triggers their transmissions. This setup is
motivated by current industry standards based on the IEEE
802.15.4 standard, e.g., [2], [3], which utilizes this structure
for wireless control in process industry. Here the triggering is
in turn generated by the controller which, in addition to com-
puting the appropriate control action, dynamically determines
the time of the next sample by a self-triggering approach [4].
In doing so the controller gives varying attention to the loops
depending on their state, while trying to communicate only
few samples. To achieve this the controller must, for every
loop, trade control performance against inter sampling time
and give a quantitative measure of the resulting performance.

The main contribution of the paper is to show that a self-
triggering controller can be derived using a receding horizon
control formulation where the predicted cost is used to jointly
determine what control signal to be applied as well as the time
of the next sampling instant. Using this formulation we can
guarantee a minimum and a maximum time between samples.

We will initially consider a single-loop system. We will then
extend the approach to the multiple-loop case which can be
analyzed with additional constraints on the communication
pattern. The results presented herein are extensions to the
authors’ previous work presented in [5]. These results have
been extended to handle multiple control loops on the same
network while maintaining control performance and simulta-
neously guarantee conflict free transmissions on the network.

The development of control strategies for wireless automa-
tion has become a large area of research in which, up until
recently, most efforts have been made under the assumption
of periodic communication [6]. However the idea of adaptive
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J (�, ⌘1, ⌘2) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i
+ c ·P(U 6= 0)

U 2 {0, 1, 2} U = �(X1, X2)
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⌘1

⌘2

X̂1

X̂2

Unicast
Network

Y1 = S

Y2 = S

S

⌘1

⌘2

X̂1

X̂2

Unicast
Network

X1 = x1

Y1 = x1

Y2 = S

⌘1

⌘2

X̂1

X̂2

Unicast
Network

X2 = x2

Y1 = S

Y2 = x2

U = 0

U = 1 U = 2

Silence symbol
S



Signaling

13

J (�, ⌘1, ⌘2) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i
+ c ·P(U 6= 0)

Coupling between scheduling and estimation policies

Nonconvex!

minimize
�,⌘1,⌘2



Signaling
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x1

x2

U = 1

A1

U = 0

A0

A2

U = 2

X̂2 = E[X2 | Y2 = S]

= E[X2 | (X1, X2) 2 A0 [ A1]

X̂2 always depends on X1

even if X1 ?? X2

X̂2 6= E[X2], in general

J (�, ⌘1, ⌘2) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i
+ c ·P(U 6= 0)



Max-scheduling
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x1

x2

U = 0

U = 2

U = 2

U = 1U = 1�max(x1, x2) ,
(
0 if |x1|, |x2| 

p
c

argmax
i

|xi| otherwise

Max-scheduling policy

Estimation policy

⌘mean
i (y) ,

(
0 if y = S

xi if y = xi



Main result
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X1 ?? X2

fX1 and fX2 are continuous, symmetric and unimodal densities

Theorem

(�max, ⌘mean
1 , ⌘mean

2 ) is a globally optimal solution



Main result

17

X1 ?? X2

fX1 and fX2 are continuous, symmetric and unimodal densities

Theorem

(�max, ⌘mean
1 , ⌘mean

2 ) is a globally optimal solution

x1

x2

U = 0

U = 2

U = 2

U = 1U = 1
The optimal scheduling policy does not 

depend on the variance of the observations!



Sketch of proof
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The optimization problem can be cast in R2

J (�, ⌘1, ⌘2) = E
h
(X1 � X̂1)

2 + (X2 � X̂2)
2
i
+ c ·P(U 6= 0)

For any given �

, x̂i Representation point

⌘⇤i (y) =

(
xi if y = xi

E[Xi | �(X1, X2) 6= i] if y = S

Lemma 1



Sketch of proof
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J̃ (x̂1, x̂2) , E


min

n
(X1 � x̂1)

2 + (X2 � x̂2)
2, (X1 � x̂1)

2 + c, (X2 � x̂2)
2 + c

o�

⌅

minimize
(x̂1,x̂2)2R2

J̃ (x̂1, x̂2)

For any given (x̂1, x̂2) 2 R2

�⇤(x1, x2) =

8
><

>:

0 if |x1 � x̂1| 
p
c, |x2 � x̂2| 

p
c

1 if |x1 � x̂1| >
p
c, |x1 � x̂1| � |x2 � x̂2|

2 otherwise



Finite dimensional cost function
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X1 ⇠ N (0, 1)

J̃ (x̂1, x̂2) , E


min

n
(X1 � x̂1)

2 + (X2 � x̂2)
2, (X1 � x̂1)

2 + c, (X2 � x̂2)
2 + c

o�
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X2 ⇠ L(0, 2) c = 1

Nonconvex!



Sketch of proof

21

Lemma 2
(0, 0) is a global minimizer of J̃ (x̂1, x̂2)

�⇤(x1, x2) =

8
><

>:

0 if |x1 � x̂1| 
p
c, |x2 � x̂2| 

p
c

1 if |x1 � x̂1| >
p
c, |x1 � x̂1| � |x2 � x̂2|

2 otherwise

�max(x1, x2) ,
(
0 if |x1|, |x2| 

p
c

argmax
i

|xi| otherwise

Max-scheduling policy

⌅



Broadcast networks
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J̃ (x̂1, x̂2, ⌘1, ⌘2) , E


min

n
(X1 � x̂1)

2 + (X2 � x̂2)
2, (X1 � ⌘1(X2))

2 + c, (X2 � ⌘2(X1))
2 + c

o�

Nonconvex, infinite dimensional!

Wireless
Network

⌘1

⌘2

X̂1

X̂2

X1

X2

Sensors Estimators

Scheduler

�

S1

S2

XU

XU

XU



Broadcast networks
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X1 ?? X2
Theorem

fX1 and fX2 are continuous and symmetric densities

(�max, ⌘mean
1 , ⌘mean

2 ) is a person-by-person optimal solution

Necessary but not sufficient for global optimality

�max is optimal for ⌘mean
1 , ⌘mean

2

⌘mean
1 , ⌘mean

2 are optimal for �max



Application to linear systems
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First-order linear systems
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Xi(k + 1) = AiXi(k) +Wi(k)

Wireless
Network

⌘1

⌘2

Estimators

Scheduler

�

X1(k)

X2(k)

Sensors

S1

S2

EU (k)

Y1(k)

Y2(k)

X̂1(k)

X̂2(k)



First-order linear systems
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Ei(k) = Xi(k)�AiX̂i(k � 1)

X̂i(k) =

(
AiX̂i(k � 1) if Yi(k) = S

AiX̂i(k � 1) + Ei(k) if Yi(k) =
�
i, Ei(k)

�

max-scheduling

“Kalman-like” 
Estimator

Innovation sequence

x1

x2

U = 0

U = 2

U = 2

U = 1U = 1

Lipsa and Martins, TAC 2011 Nayyar et al., TAC 2013 Xia et al., TAC 2017 Xu and Hespanha, CDC 2005



Remarks
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1.  Optimal scheduling and estimation strategies for iid state estimation 

•  Global optimality for unicast networks
•  Person-by-person optimality for broadcast networks

3. Application to the scheduling of first order LTI systems

Despite the lack of convexity, we found a globally optimal solution  

2. Our results hold for vectors and arbitrary number of sensors



Future work
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•  Sequential problem formulations: 
1. First order LTI with aggregate error cost 
2. IID sources with limited number of transmissions

Wireless
Network

⌘1

⌘2

Estimators

Scheduler

�

X1(k)

X2(k)

Sensors

S1

S2

EU (k)

Y1(k)

Y2(k)

X̂1(k)

X̂2(k)

J (�, ⌘1, ⌘2) =
TX

k=1

E
h
(X1(k)� X̂1(k))

2 + (X2(k)� X̂2(k))
2
i
+ c ·P(U(k) 6= 0)
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Lemma
(0, 0) is a global minimum of J̃ (x̂1, x̂2)

J̃ (x̂1, x̂2) =

Z

R

"Z

R
g(x̂1, x1; x̂2, x2)fX1(x1)dx1

#
fX2(x2)dx2

where

J (�, x̂) =

Z

Rn

"✓ NX

i=1

kxi � x̂ik
2

◆
1(�(x) = 0)+

NX

j=1

✓X

i 6=j

kxi � x̂ik
2 + c

◆
1(�(x) = j)

3

5 fX(x)dx, (21)

where we have used the following notation

1(A)
def
=

(
1, if A is true;
0, otherwise.

(22)

Denote J̃ : Rn
! R such that

J̃ (x̂)
def
= min

�2�
J (�, x̂). (23)

Let A�
j

def
= {x 2 Rn

| �(x) = j}, j 2 {0, 1, · · · , N}. The
sets A�

j are disjoint, therefore, at a given x 2 Rn only one
of the indicator functions in Eq. (21) is equal to one and the
remaining are equal to zero. Assigning the points x 2 Rn

to the sets A�
j such as to minimize Eq. (21), we construct a

scheduling strategy parametrized by x̂ 2 Rn that is optimal
for a given  x̂. Denote this scheduling strategy by �⇤x̂, where
x 2 Rn is assigned to A�⇤

x̂
0 if and only if

kxi � x̂ik 
p

c, i 2 {1, · · · , N}. (24)

Similarly, x 2 Rn is assigned to A�⇤
x̂

j , j 2 {1, · · · , N}, if
and only if

(
kxj � x̂jk >

p
c;

kxj � x̂jk � kxk � x̂kk, k 6= j.
(25)

The resulting cost is a function of x̂ 2 Rn and is equal to

J̃ (x̂) = E

2

4min

⇢ NX

i=1

kXi � x̂ik
2,
X

i 6=1

kXi � x̂ik
2 + c,

X

i 6=2

kXi � x̂ik
2 + c, · · · ,

X

i 6=N

kXi � x̂ik
2 + c

�3

5 . (26)

Therefore, Problem 1 reduces to

minimize
x̂2Rn

J̃ (x̂). (27)

Let 0k denote the zero vector of dimension k.
Lemma 2: If x̂⇤ = 0n, then the optimal scheduling

strategy is �max.
Proof: The proof is an immediate consequence of

Eqs. (24) and (25), replacing x̂i = 0ni , i 2 {1, · · · , N}.

We are now ready to present the proof of Theorem 1.
Proof: From Lemma 1, Problem 1 is equivalent to a finite
dimensional optimization problem with variable x̂ 2 Rn.
We shall show that under the assumptions of Theorem 1, the
point x̂⇤ = 0n is a global minimizer of J̃ (x̂).

x1

x̂1

�(x̂2, x2)

↵(x̂2, x2)

g(x̂1, x1; x̂2, x2)

Fig. 4. Conceptual plot of G(x̂, x) as a function of xj while keeping its
remaining arguments fixed.

Define the following function

G(x̂, x)
def
= min

⇢ NX

i=1

kxi � x̂ik
2,
X

i 6=1

kxi � x̂ik
2 + c,

· · · ,
X

i 6=N

kxi � x̂ik
2 + c

�
. (28)

Let j 2 {1, · · · , N} and note that G(x̂, x) can be expressed
as

G(x̂, x) = min
n
↵j(x̂�j , x�j),

kxj � x̂jk
2 + �j(x̂�j , x�j)

o
, (29)

where
↵j(x̂�j , x�j)

def
=

X

i 6=j

kxi � x̂ik
2 + c (30)

and

�j(x̂�j , x�j)
def
= min

⇢X

i 6=j

kxi � x̂ik
2,

X

i 6={1,j}

kxi � x̂ik
2 + c, · · · ,

X

i 6={j�1,j}

kxi � x̂ik
2 + c,

X

i 6={j+1,j}

kxi � x̂ik
2 + c, · · · ,

X

i 6={N,j}

kxi � x̂ik
2 + c

�
. (31)

Therefore, G(x̂, x) satisfies the following property:

lim
kxjk!+1

G(x̂, x) = ↵j(x̂�j , x�j), (32)

which can be visualized in Fig. 4.
Using the mutual independence assumption, we rewrite

the cost as

J̃ (x̂) =

Z

Rn1

· · ·

Z

RnN

G(x̂, x)fX1(x1) · · · fXN (xN )dx1 · · · dxN .

(33)
Define the following function

J̃j(x̂j , x̂�j , x�j)
def
=

Z

Rnj

G(x̂, x)fXj (xj)dxj . (34)
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Sketch of proof

a1 = b1 x

Z = +1

⇥
0

where

J (�, x̂) =

Z

Rn

"✓ NX

i=1

kxi � x̂ik
2

◆
1(�(x) = 0)+

NX

j=1

✓X

i 6=j

kxi � x̂ik
2 + c

◆
1(�(x) = j)

3

5 fX(x)dx, (21)

where we have used the following notation

1(A)
def
=

(
1, if A is true;
0, otherwise.

(22)

Denote J̃ : Rn
! R such that

J̃ (x̂)
def
= min

�2�
J (�, x̂). (23)

Let A�
j

def
= {x 2 Rn

| �(x) = j}, j 2 {0, 1, · · · , N}. The
sets A�

j are disjoint, therefore, at a given x 2 Rn only one
of the indicator functions in Eq. (21) is equal to one and the
remaining are equal to zero. Assigning the points x 2 Rn

to the sets A�
j such as to minimize Eq. (21), we construct a

scheduling strategy parametrized by x̂ 2 Rn that is optimal
for a given  x̂. Denote this scheduling strategy by �⇤x̂, where
x 2 Rn is assigned to A�⇤

x̂
0 if and only if

kxi � x̂ik 
p

c, i 2 {1, · · · , N}. (24)

Similarly, x 2 Rn is assigned to A�⇤
x̂

j , j 2 {1, · · · , N}, if
and only if

(
kxj � x̂jk >

p
c;

kxj � x̂jk � kxk � x̂kk, k 6= j.
(25)

The resulting cost is a function of x̂ 2 Rn and is equal to

J̃ (x̂) = E

2

4min

⇢ NX

i=1

kXi � x̂ik
2,
X

i 6=1

kXi � x̂ik
2 + c,

X

i 6=2

kXi � x̂ik
2 + c, · · · ,

X

i 6=N

kXi � x̂ik
2 + c

�3

5 . (26)

Therefore, Problem 1 reduces to

minimize
x̂2Rn

J̃ (x̂). (27)

Let 0k denote the zero vector of dimension k.
Lemma 2: If x̂⇤ = 0n, then the optimal scheduling

strategy is �max.
Proof: The proof is an immediate consequence of

Eqs. (24) and (25), replacing x̂i = 0ni , i 2 {1, · · · , N}.

We are now ready to present the proof of Theorem 1.
Proof: From Lemma 1, Problem 1 is equivalent to a finite
dimensional optimization problem with variable x̂ 2 Rn.
We shall show that under the assumptions of Theorem 1, the
point x̂⇤ = 0n is a global minimizer of J̃ (x̂).

x1

x̂1

g(x̂1, x1; x̂2, x2)

Fig. 4. Conceptual plot of G(x̂, x) as a function of xj while keeping its
remaining arguments fixed.

Define the following function

G(x̂, x)
def
= min

⇢ NX

i=1

kxi � x̂ik
2,
X

i 6=1

kxi � x̂ik
2 + c,

· · · ,
X

i 6=N

kxi � x̂ik
2 + c

�
. (28)

Let j 2 {1, · · · , N} and note that G(x̂, x) can be expressed
as

G(x̂, x) = min
n
↵j(x̂�j , x�j),

kxj � x̂jk
2 + �j(x̂�j , x�j)

o
, (29)

where
↵j(x̂�j , x�j)

def
=

X

i 6=j

kxi � x̂ik
2 + c (30)

and

�j(x̂�j , x�j)
def
= min

⇢X

i 6=j

kxi � x̂ik
2,

X

i 6={1,j}

kxi � x̂ik
2 + c, · · · ,

X

i 6={j�1,j}

kxi � x̂ik
2 + c,

X

i 6={j+1,j}

kxi � x̂ik
2 + c, · · · ,

X

i 6={N,j}

kxi � x̂ik
2 + c

�
. (31)

Therefore, G(x̂, x) satisfies the following property:

lim
kxjk!+1

G(x̂, x) = ↵j(x̂�j , x�j), (32)

which can be visualized in Fig. 4.
Using the mutual independence assumption, we rewrite

the cost as

J̃ (x̂) =

Z

Rn1

· · ·

Z

RnN

G(x̂, x)fX1(x1) · · · fXN (xN )dx1 · · · dxN .

(33)
Define the following function

J̃j(x̂j , x̂�j , x�j)
def
=

Z

Rnj

G(x̂, x)fXj (xj)dxj . (34)

fX1(x1)

J̃ (x̂1, x̂2) =

Z

R

"Z

R
g(x̂1, x1; x̂2, x2)fX1(x1)dx1

#
fX2(x2)dx2

⌅

J̃ (x̂1, x̂2) � J̃ (0, x̂2) =) x̂⇤
1 = 0

Follows from Hardy-Littlewood inequality

0


