

Optimal sensor scheduling strategies for networked estimation

Marcos Vasconcelos

mvasconc@usc.edu
www.terpconnect.umd.edu/~marcos

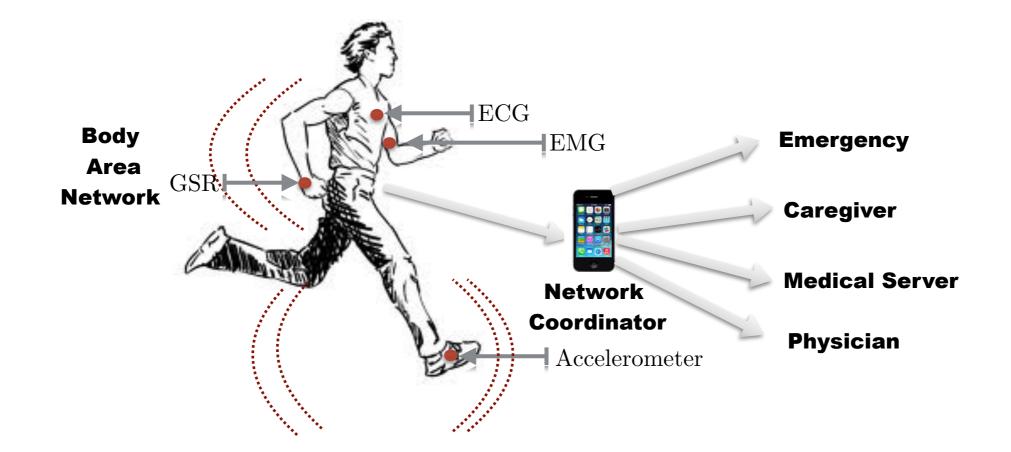
Ashutosh Nayyar Urbashi Mitra

Dept. of Electrical Engineering University of Southern California

56th IEEE Conference on Decision and Control 12-15 December 2017 - Melbourne, Australia

Body area networks

System coupling bio-sensors on people and wireless networks



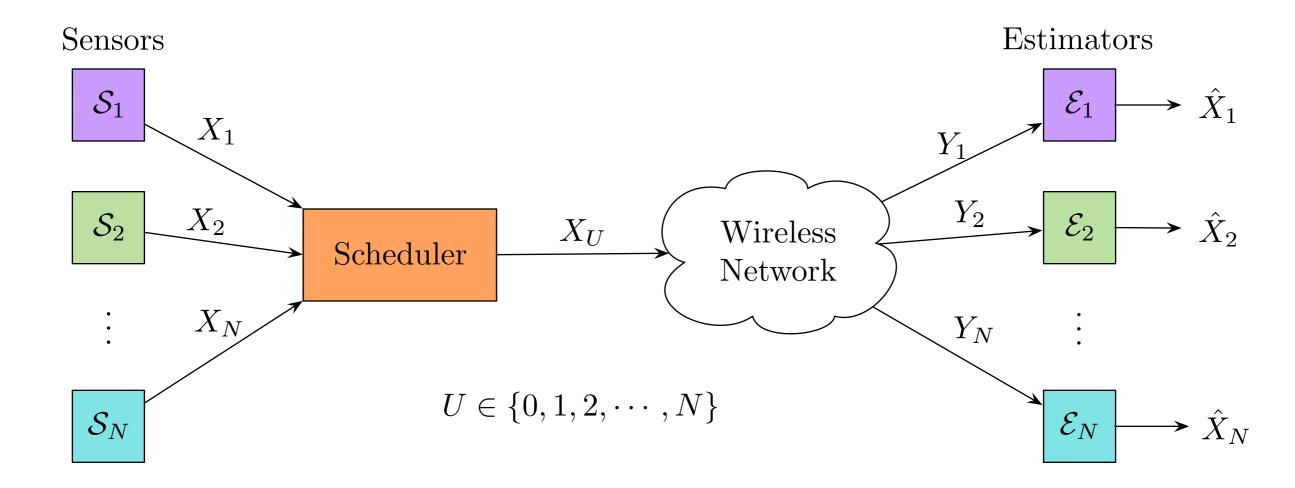
Goals

- 1. Real-time monitoring
- 2. Feedback and interventions

Design challenges

- 1. Data heterogeneity
- **2.** Communication constraints
- 3. Energy constraints

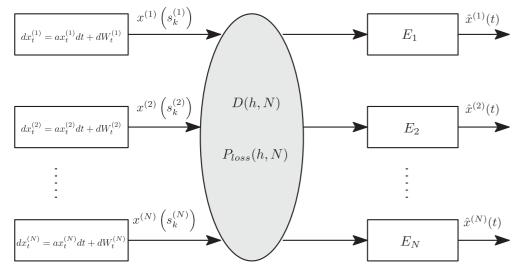
Basic framework



Communication constraint

At most one packet can be transmitted

Related work: Estimation

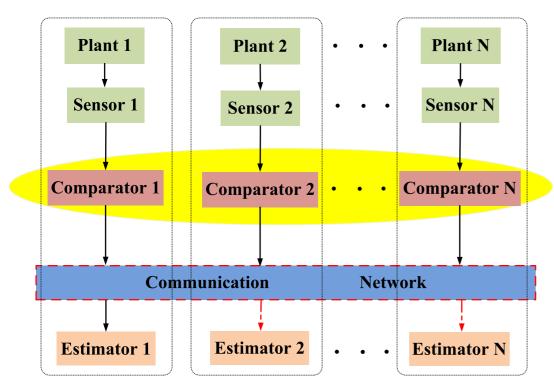


Rabi et al - Int. J. Rob. Non. Cont. 2009

Shared channel, contention-based MAC

• CSMA scheduling $-J_{e} \stackrel{\Delta}{=} \frac{1}{N} \sum_{i=1}^{N} \limsup_{M \to \infty} \frac{1}{M} \int_{0}^{M} \mathbb{E}[(x_{t}^{(i)} - \hat{x}_{t}^{(i)})^{2}] dt$

Xia, Gupta and Antsaklis - TAC 2017

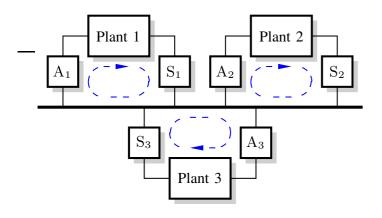


- Scheduling fixed
 - Static: TDMA, randomized, ...
 - Dynamic: max-scheduling

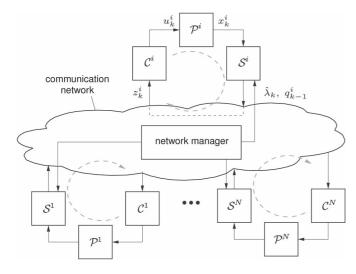
$$J \triangleq \sum_{i=1}^{N} \lim_{t \to \infty} \frac{1}{t} \sum_{k=0}^{t} \mathbb{E} \left\{ e_i^{\text{dec}}(k) \left[e_i^{\text{dec}}(k) \right]^\top \right\}$$

Related work: Control

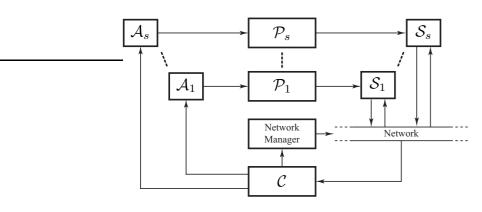
Cervin and Henningsson - CDC 2008



Molin and Hirche, TAC 2014



Henriksson et al, TCST 2015



• Scheduling fixed: TDMA, FDMA or CSMA

$$J_i = \lim_{t \to \infty} \frac{1}{t} \operatorname{E} \int_0^t (x_i(s))^2 ds$$

• Joint CSMA type scheduling and control

$$\min_{\substack{\gamma^1,\ldots,\gamma^N\\\pi^1,\ldots,\pi^N}}\sum_{i=1}^N J^i$$

$$J^{i} = \limsup_{T \to \infty} \frac{1}{T} \mathsf{E} \left[\sum_{k=0}^{T-1} \left(x_{k}^{i} \right)^{\mathrm{T}} Q_{x}^{i} x_{k}^{i} + \left(u_{k}^{i} \right)^{\mathrm{T}} Q_{u}^{i} u_{k}^{i} \right]$$

Model predictive control and scheduling

$$\sum_{l=0}^{\infty} \left(\|x_{\ell}(k_{\ell}+l)\|_{Q_{\ell}}^2 + \|u_{\ell}(k_{\ell}+l)\|_{R_{\ell}}^2 \right)$$

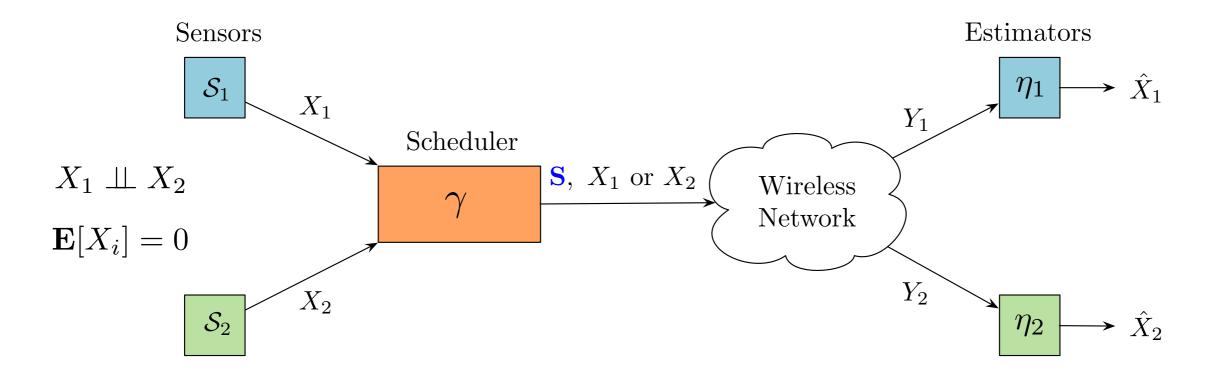
Our goal

No assumptions on the scheduler or the estimators

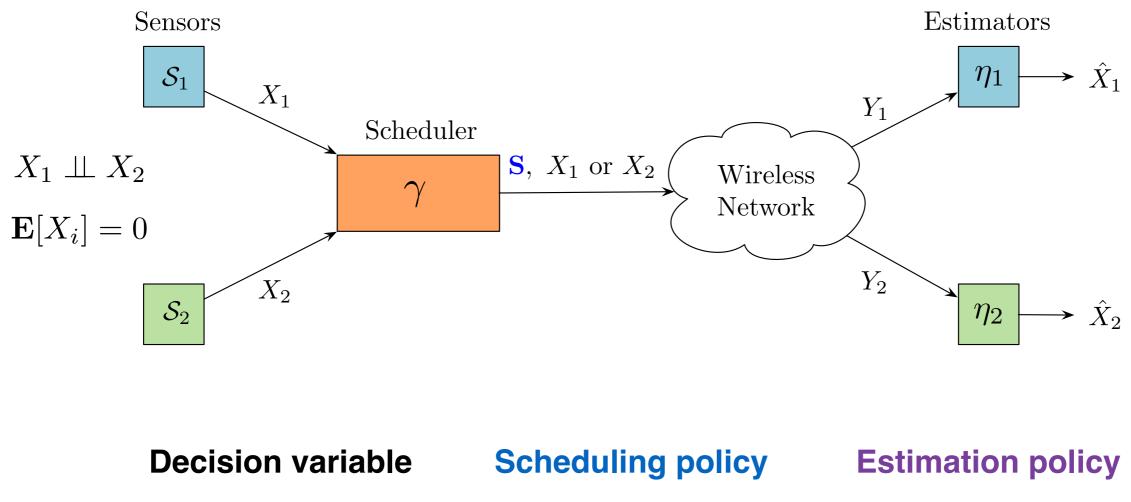
Find jointly optimal scheduling and estimation policies

One-shot problem

Simplest problem: two sensors



Simplest problem: two sensors

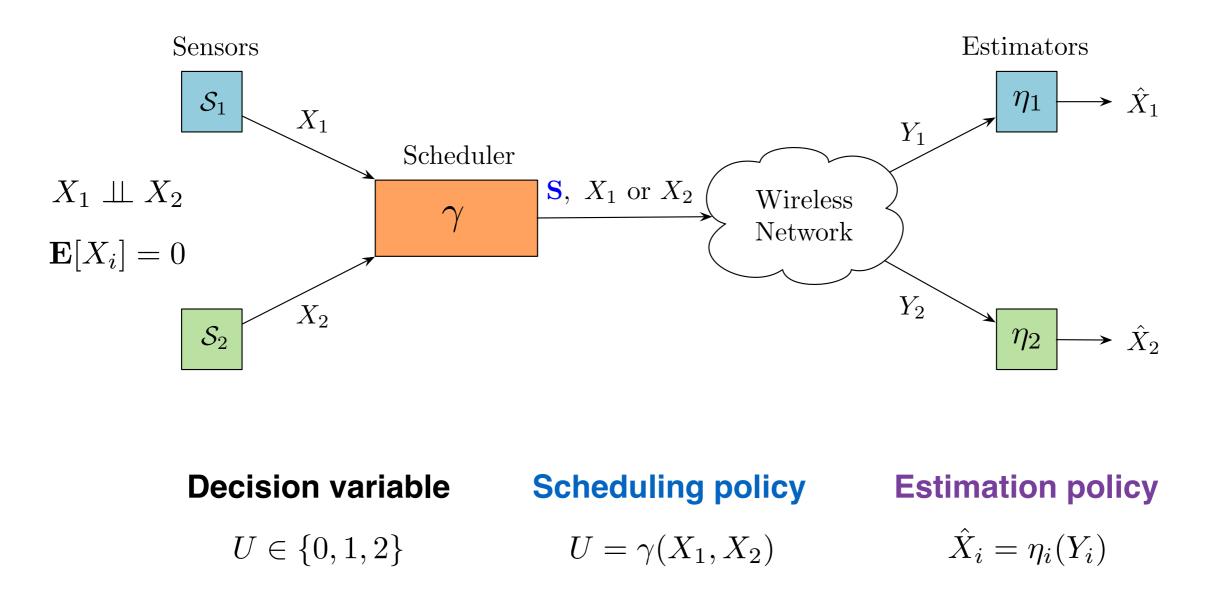


 $U = \gamma(X_1, X_2)$

 $U \in \{0, 1, 2\}$

$$\hat{X}_i = \eta_i(Y_i)$$

Simplest problem: two sensors

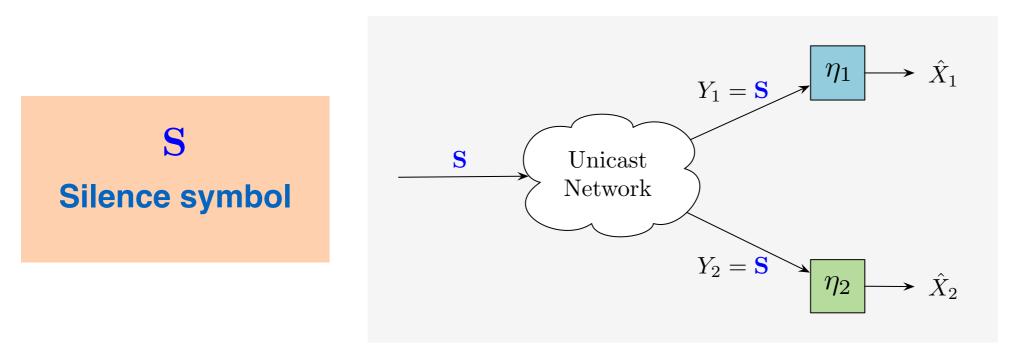


Find **scheduling** and **estimation** policies that **jointly** minimize the following cost

 $\underset{\gamma,\eta_1,\eta_2}{\text{minimize}} \quad \mathcal{J}(\gamma,\eta_1,\eta_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right] + c \cdot \mathbf{P}(U \neq 0)$

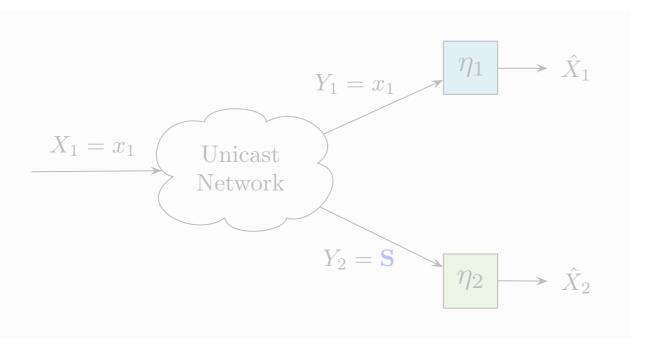
Unicast information structure

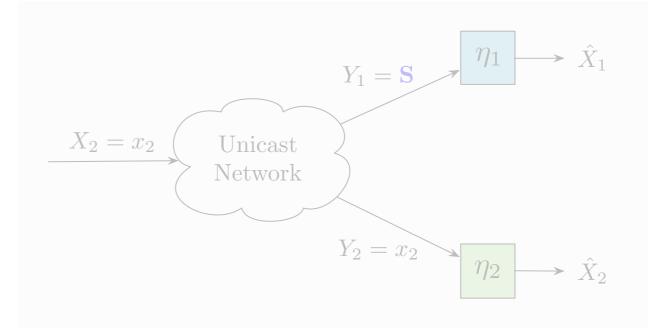
U = 0



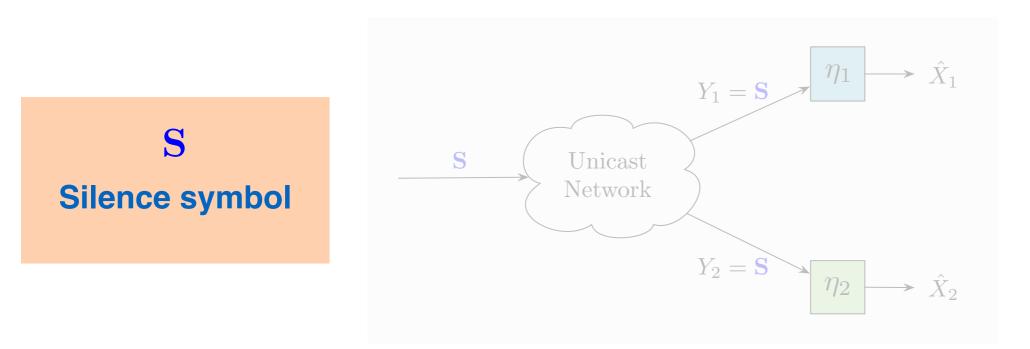
U = 1

U = 2



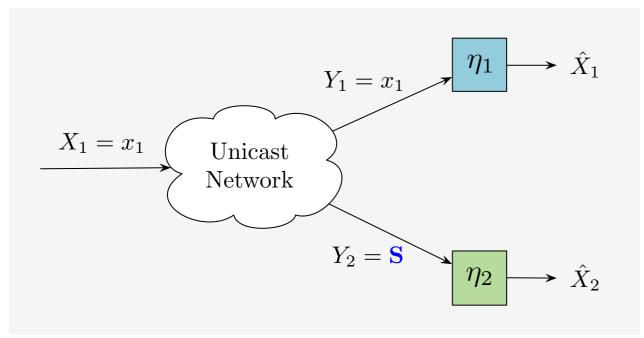


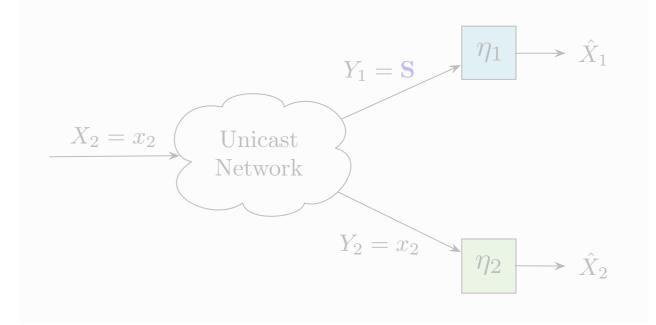
Unicast information structure



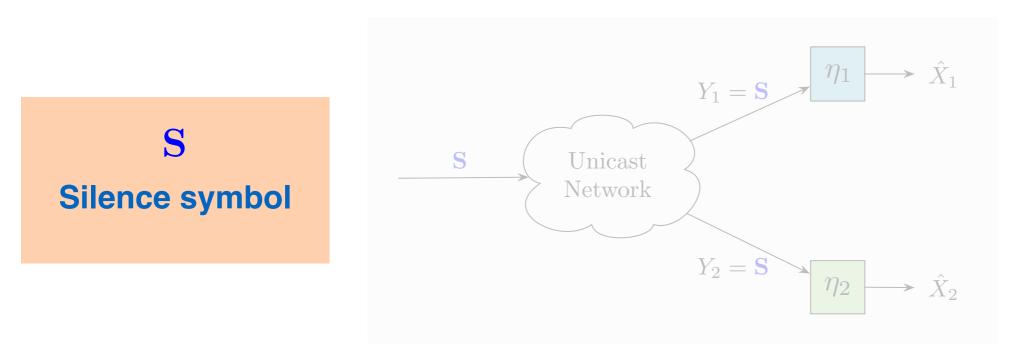
U = 1

U = 2



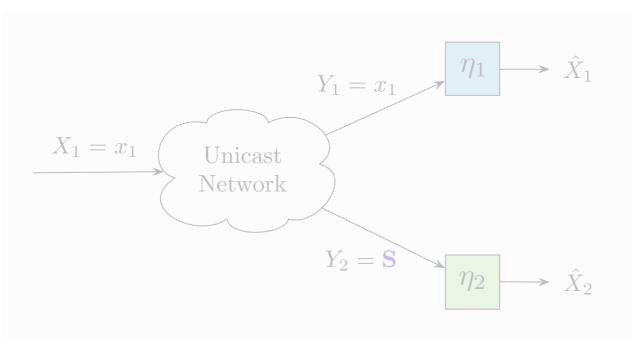


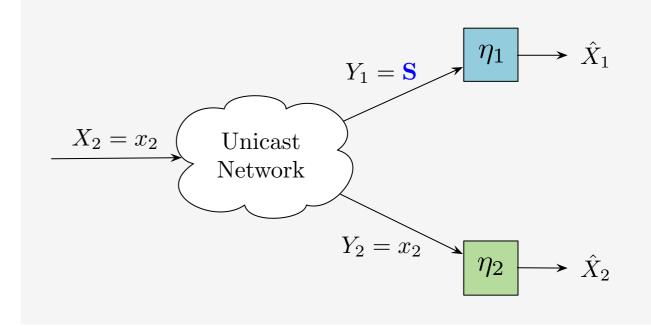
Unicast information structure



U = 1

U = 2





Signaling

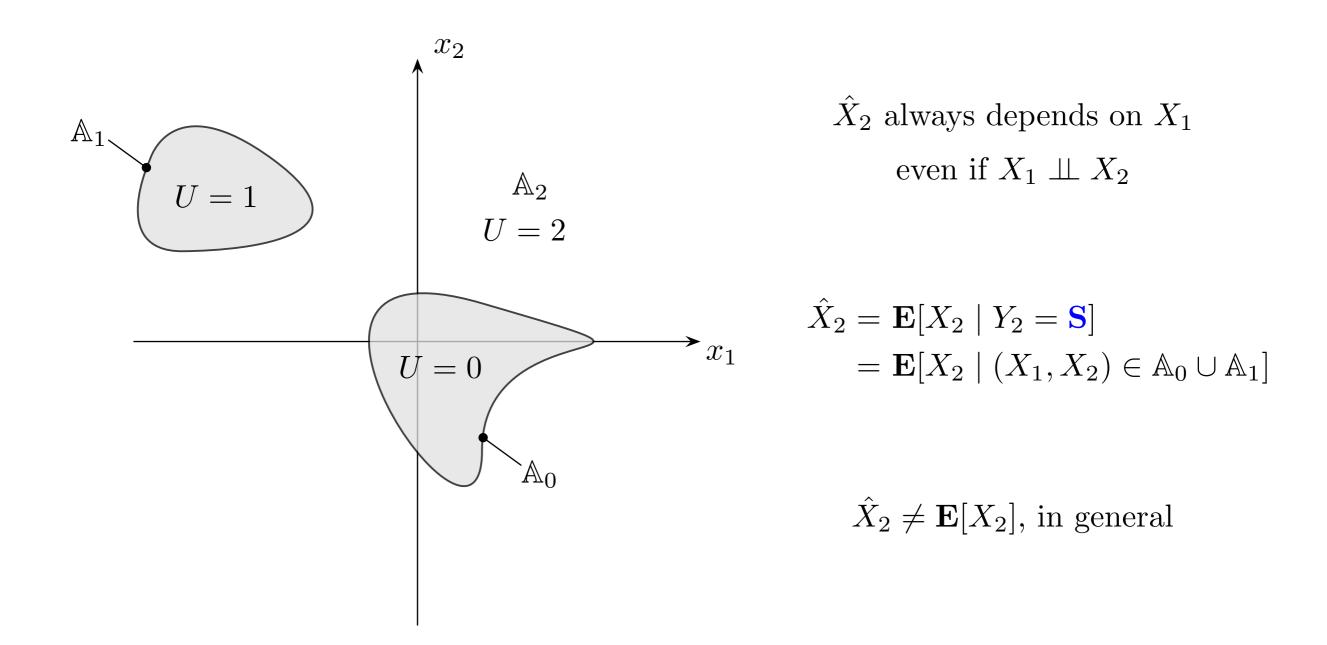
Coupling between **scheduling** and **estimation** policies

minimize
$$\mathcal{J}(\gamma, \eta_1, \eta_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right] + c \cdot \mathbf{P}(U \neq 0)$$

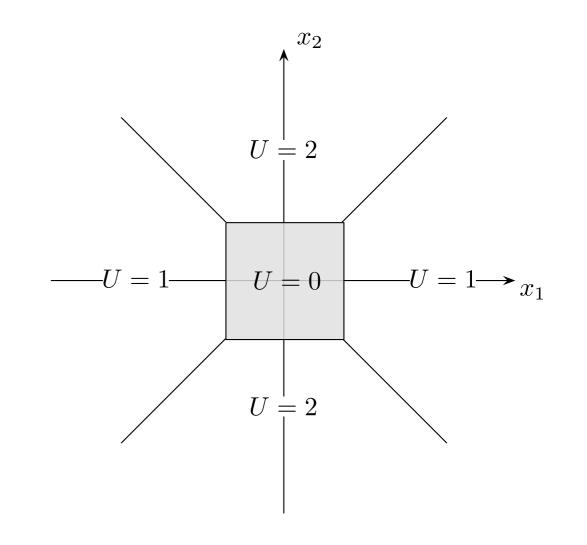
Nonconvex!

Signaling

$$\mathcal{J}(\gamma, \eta_1, \eta_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right] + c \cdot \mathbf{P}(U \neq 0)$$



Max-scheduling



Max-scheduling policy

$$\gamma^{\max}(x_1, x_2) \triangleq \begin{cases} 0 & \text{if } |x_1|, |x_2| \le \sqrt{c} \\ \arg\max_i |x_i| & \text{otherwise} \end{cases}$$

Estimation policy

$$\eta_i^{\text{mean}}(y) \triangleq \begin{cases} 0 & \text{if } y = \mathbf{S} \\ x_i & \text{if } y = x_i \end{cases}$$

Main result

$X_1 \perp\!\!\!\perp X_2$

 f_{X_1} and f_{X_2} are continuous, symmetric and unimodal densities $(\gamma^{\max}, \eta_1^{\text{mean}}, \eta_2^{\text{mean}})$ is a globally optimal solution

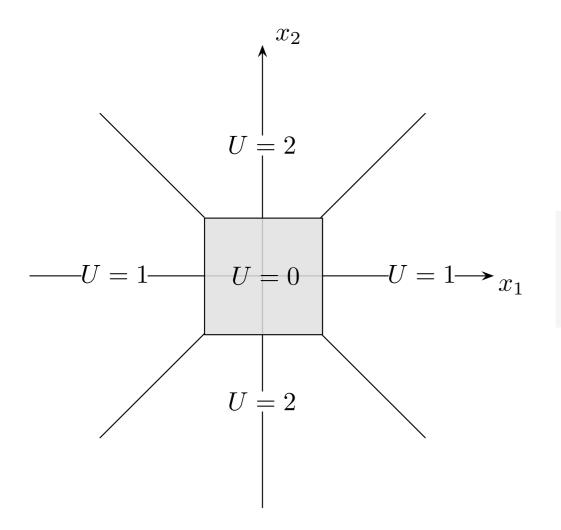
Main result

Theorem

$X_1 \perp\!\!\!\perp X_2$

 f_{X_1} and f_{X_2} are continuous, symmetric and unimodal densities

 $(\gamma^{\max}, \eta_1^{\text{mean}}, \eta_2^{\text{mean}})$ is a globally optimal solution



The optimal scheduling policy does not depend on the variance of the observations!

Sketch of proof

Lemma 1

The optimization problem can be cast in \mathbb{R}^2

$$\mathcal{J}(\gamma, \eta_1, \eta_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right] + c \cdot \mathbf{P}(U \neq 0)$$

For any given γ

$$\eta_i^*(y) = \begin{cases} x_i & \text{if } y = x_i \\ \mathbf{E}[X_i \mid \gamma(X_1, X_2) \neq i] & \text{if } y = \mathbf{S} \end{cases}$$
$$\stackrel{\bigtriangleup}{\frown} \hat{x}_i \qquad \text{Representation point}$$

Sketch of proof

For any given $(\hat{x}_1, \hat{x}_2) \in \mathbb{R}^2$

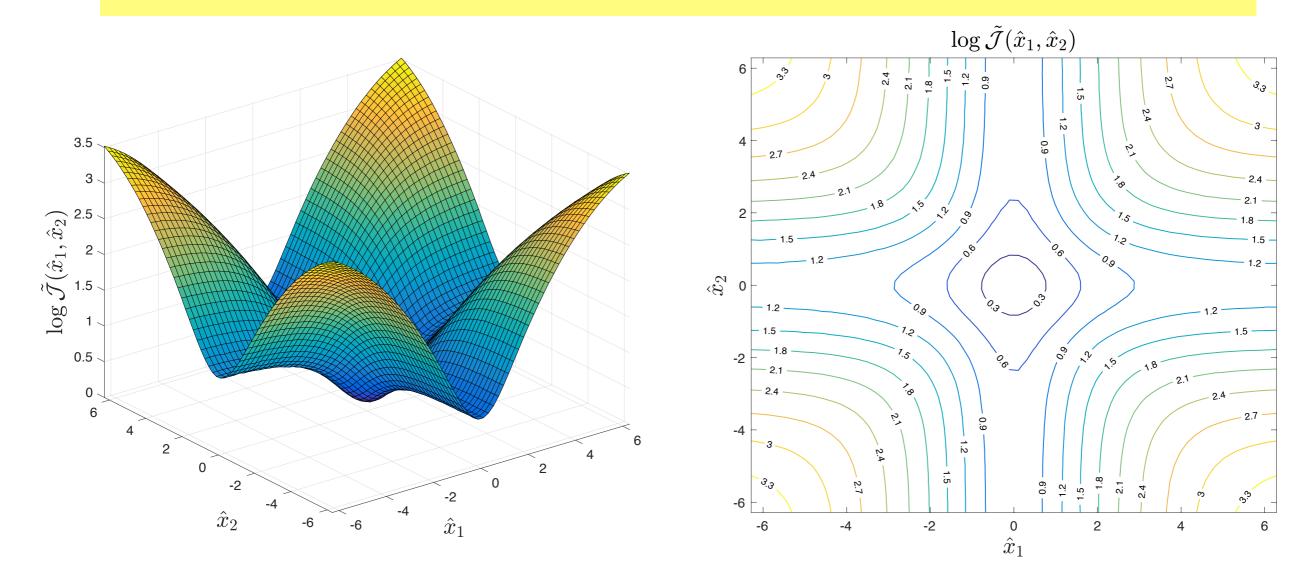
$$\gamma^*(x_1, x_2) = \begin{cases} 0 & \text{if } |x_1 - \hat{x}_1| \le \sqrt{c}, |x_2 - \hat{x}_2| \le \sqrt{c} \\ 1 & \text{if } |x_1 - \hat{x}_1| > \sqrt{c}, |x_1 - \hat{x}_1| \ge |x_2 - \hat{x}_2| \\ 2 & \text{otherwise} \end{cases}$$

$$\tilde{\mathcal{J}}(\hat{x}_1, \hat{x}_2) \triangleq \mathbf{E} \left[\min \left\{ (X_1 - \hat{x}_1)^2 + (X_2 - \hat{x}_2)^2, (X_1 - \hat{x}_1)^2 + c, (X_2 - \hat{x}_2)^2 + c \right\} \right]$$

Finite dimensional cost function

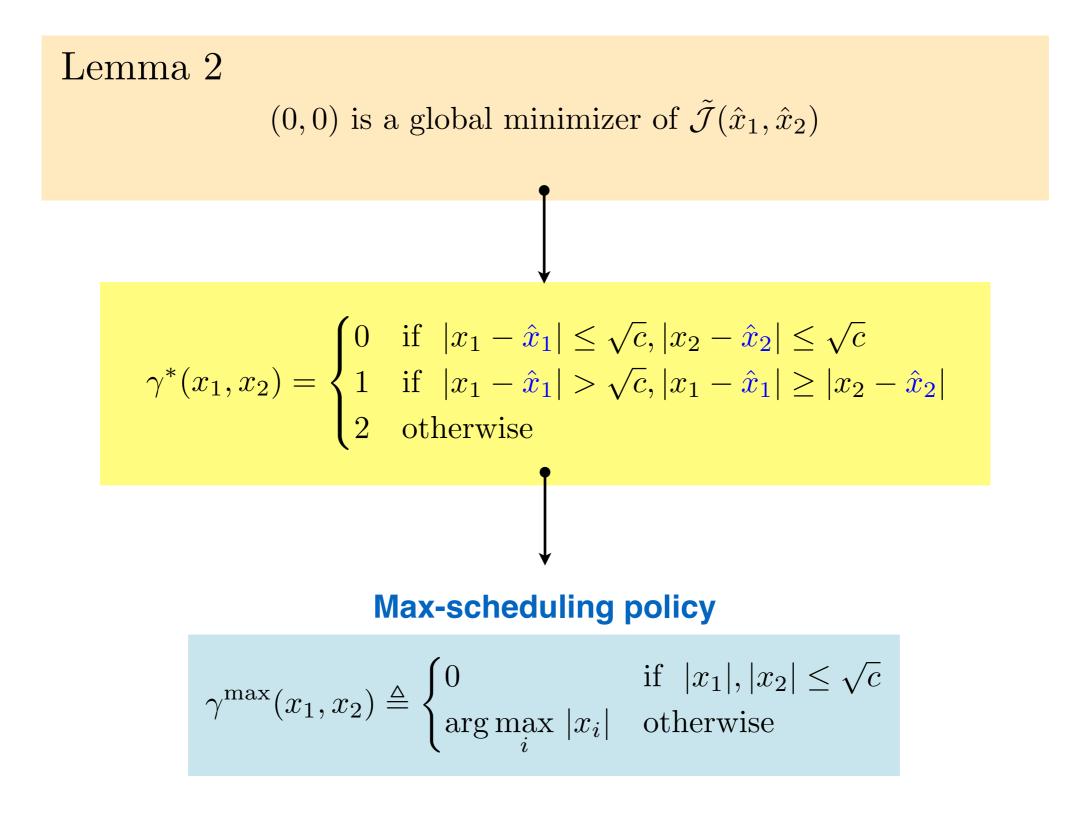
$$X_1 \sim \mathcal{N}(0,1) \qquad X_2 \sim \mathcal{L}(0,2) \qquad c = 1$$

$$\tilde{\mathcal{J}}(\hat{x}_1, \hat{x}_2) \triangleq \mathbf{E} \left[\min \left\{ (X_1 - \hat{x}_1)^2 + (X_2 - \hat{x}_2)^2, (X_1 - \hat{x}_1)^2 + c, (X_2 - \hat{x}_2)^2 + c \right\} \right]$$

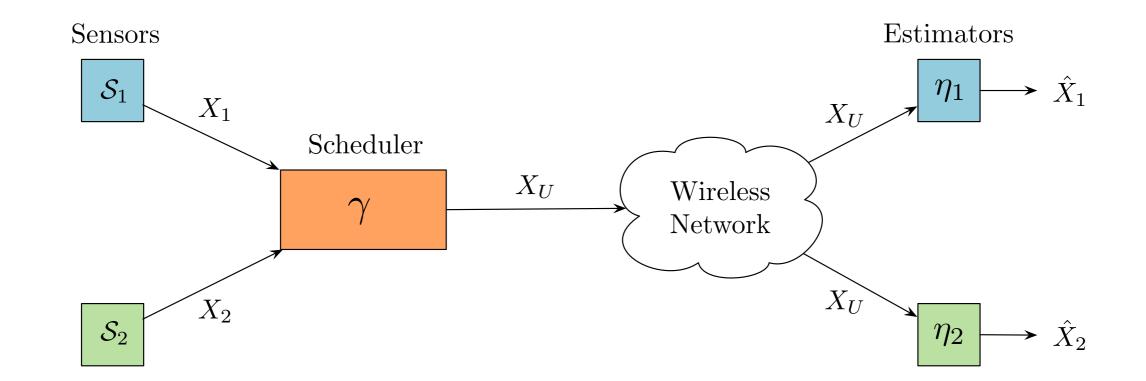


Nonconvex!

Sketch of proof



Broadcast networks



$$\tilde{\mathcal{J}}(\hat{x}_1, \hat{x}_2, \eta_1, \eta_2) \triangleq \mathbf{E} \left[\min \left\{ (X_1 - \hat{x}_1)^2 + (X_2 - \hat{x}_2)^2, (X_1 - \eta_1(X_2))^2 + c, (X_2 - \eta_2(X_1))^2 + c \right\} \right]$$

Nonconvex, infinite dimensional!

Broadcast networks

Theorem

$X_1 \perp \!\!\!\perp X_2$

 f_{X_1} and f_{X_2} are **continuous** and **symmetric** densities

 $(\gamma^{\max}, \eta_1^{\text{mean}}, \eta_2^{\text{mean}})$ is a **person-by-person optimal solution**

 γ^{\max} is optimal for $\eta_1^{\text{mean}}, \eta_2^{\text{mean}}$

 $\eta_1^{\text{mean}}, \eta_2^{\text{mean}}$ are optimal for γ^{max}

Necessary but not sufficient for global optimality

Application to linear systems

First-order linear systems

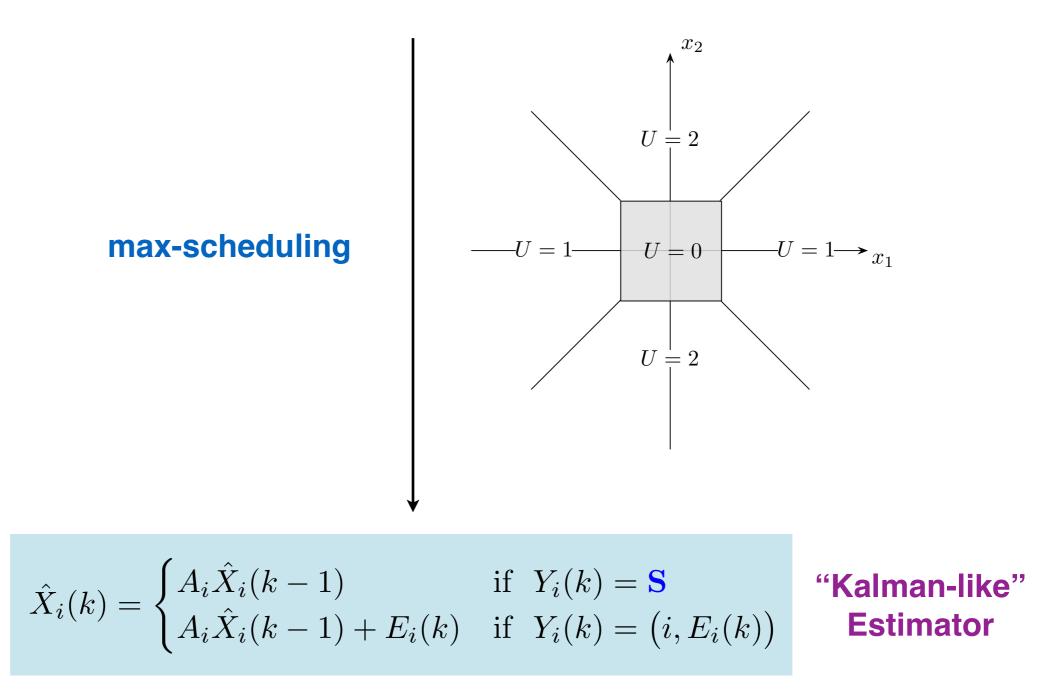
$$X_i(k+1) = A_i X_i(k) + W_i(k)$$



First-order linear systems

Innovation sequence

$$E_i(k) = X_i(k) - A_i \hat{X}_i(k-1)$$



Lipsa and Martins, TAC 2011

Nayyar et al., TAC 2013

Xia et al., TAC 2017

Remarks

1. Optimal scheduling and estimation strategies for iid state estimation

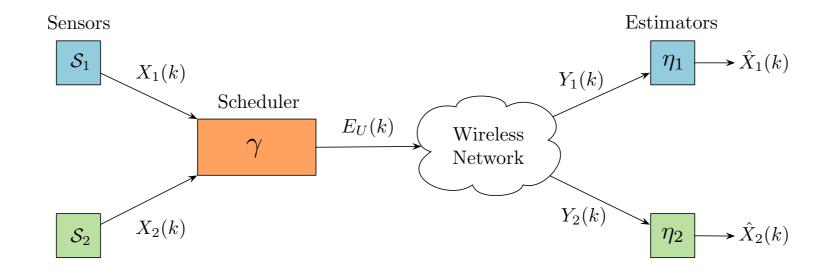
- Global optimality for unicast networks
- Person-by-person optimality for broadcast networks
- 2. Our results hold for vectors and arbitrary number of sensors
- 3. Application to the scheduling of first order LTI systems

Despite the lack of convexity, we found a globally optimal solution

Future work

• Sequential problem formulations:

- 1. First order LTI with aggregate error cost
- 2. IID sources with limited number of transmissions



$$\mathcal{J}(\gamma,\eta_1,\eta_2) = \sum_{k=1}^T \mathbf{E} \left[(X_1(k) - \hat{X}_1(k))^2 + (X_2(k) - \hat{X}_2(k))^2 \right] + c \cdot \mathbf{P}(U(k) \neq 0)$$

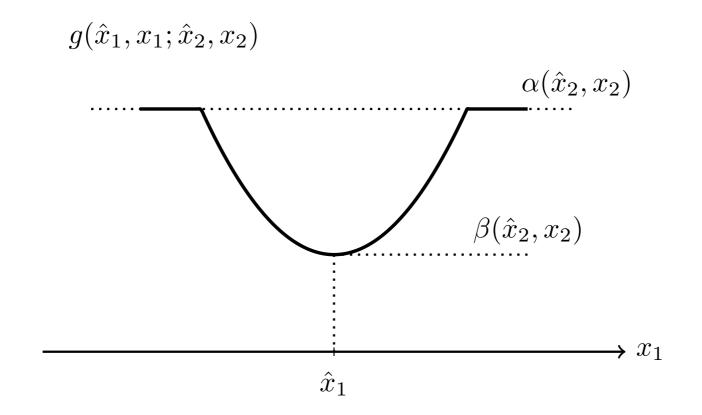
Appendix

Sketch of proof

Lemma

$$(0,0)$$
 is a global minimum of $\tilde{\mathcal{J}}(\hat{x}_1,\hat{x}_2)$

$$\tilde{\mathcal{J}}(\hat{x}_1, \hat{x}_2) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} g(\hat{x}_1, x_1; \hat{x}_2, x_2) f_{X_1}(x_1) dx_1 \right] f_{X_2}(x_2) dx_2$$



Sketch of proof

