

Estimation over the collision channel & Observation-driven sensor scheduling

Marcos Vasconcelos

mvasconc@usc.edu
www-bcf.usc.edu/~mvasconc

Nuno Martins (UMD) Ashutosh Nayyar (USC) Urbashi Mitra (USC)

Dept. of Electrical Engineering
University of Southern California

Carnegie Mellon University March 20th, 2018 - Pittsburgh, PA

Networked decision systems

Many applications

- 1. Networked control
- 2. Remote estimation
- 3. Sensor networks
- 4. Robotic networks

Many challenges

Communication is imperfect:

Delays, noise, quantization, congestion, packet drops, connectivity and interference

Remote sensing

Remote monitoring of one-time catastrophic events

Powerlines

Bridges

Real-time wireless networking for the Internet-of-Things

Basic framework

Estimation over the collision channel

Observations

$$X_i \sim f_{X_i}$$

$$X_i \perp \!\!\! \perp X_j$$

$$f_{X_i}(x) > 0, \quad x_i \in \mathbb{R}$$

Decision variables

$U_i \in \{0, 1\}$

Stay silent

$$S_i = \varnothing$$
 $S_i = (i, X_i)$

$$\mathbf{P}(U_i = 1 \mid X_i = x_i) = \mathcal{U}_i(x_i)$$

Estimation policy

$$\hat{\boldsymbol{X}} = \mathcal{E}(y)$$

Estimation over the collision channel

Find a strategy $(\mathcal{U}_1^{\star}, \cdots, \mathcal{U}_n^{\star})$ that jointly minimizes the following cost

$$\mathcal{J}(\mathcal{U}_1,\ldots,\mathcal{U}_n) = \mathbf{E}\left[\sum_{i=1}^n (X_i - \hat{X}_i)^2\right]$$

Simplest case: two sensors

$$\mathbf{P}(U_i = 1 \mid X_i = x_i) = \mathcal{U}_i(x_i)$$

$$\mathbb{U}_i = \{ \mathcal{U} \mid \mathcal{U} : \mathbb{R} \to [0, 1] \}, \quad i \in \{1, 2\}$$

Problem 1

$$\min_{(\mathcal{U}_1,\mathcal{U}_2)\in\mathbb{U}_1\times\mathbb{U}_2} \quad \mathcal{J}(\mathcal{U}_1,\mathcal{U}_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right]$$

single transmission

$$U_1 = 1, U_2 = 0$$

no transmissions $U_1 = 0, U_2 = 0$

>1 transmissions
$$U_1 = 1, U_2 = 1$$

success!

no transmission Ø

collision C

From the channel output we can always recover U_1 and U_2

single transmission

$$U_1 = 1, U_2 = 0$$

no transmissions $U_1 = 0, U_2 = 0$

>1 transmissions
$$U_1 = 1, U_2 = 1$$

success!

no transmission \varnothing

collision C

From the channel output we can always recover U_1 and U_2

single transmission

$$U_1 = 1, U_2 = 0$$

no transmissions $U_1 = 0, U_2 = 0$

>1 transmissions
$$U_1 = 1, U_2 = 1$$

success!

no transmission Ø

collision ${\mathfrak C}$

From the channel output we can always recover U_1 and U_2

single transmission

$$U_1 = 1, U_2 = 0$$

no transmissions $U_1 = 0, U_2 = 0$

>1 transmissions $U_1 = 1, U_2 = 1$

success!

no transmission \varnothing

collision C

The collision channel is fundamentally different from the packet-drop channel 1,2

- 1. Sinopoli et al, "Kalman filtering with intermittent observations," IEEE TAC 2004
- 2. Gupta et al, "Optimal LQG control across packet-dropping links," Systems and Control Letters 2007

Why is this problem interesting?

$$\min_{(\mathcal{U}_1,\mathcal{U}_2)\in\mathbb{U}_1\times\mathbb{U}_2} \quad \mathcal{J}(\mathcal{U}_1,\mathcal{U}_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right]$$

Team-decision problem with nonclassical information structure

Nonconvex (in most cases) intractable 1,2

- 1. Witsenhausen, "A counterexample in optimal stochastic control," SIAM J. Control 1968
 - 2. Tsitsiklis & Athans, "On the complexity of decentralized decision making and detection problems," IEEE TAC 1985

Why is this problem interesting?

$$\min_{(\mathcal{U}_1,\mathcal{U}_2)\in\mathbb{U}_1\times\mathbb{U}_2} \quad \mathcal{J}(\mathcal{U}_1,\mathcal{U}_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right]$$

Look for a class parametrizable policies that contains an optimal strategy

- 1. Witsenhausen, "A counterexample in optimal stochastic control," SIAM J. Control 1968
 - Tsitsiklis & Athans, "On the complexity of decentralized decision making and detection problems," IEEE TAC 1985

Deterministic threshold policies

Threshold policy

$$\mathcal{U}(x) = \begin{cases} 0 & a \le x \le b \\ 1 & \text{otherwise} \end{cases}$$

- 1. Imer & Basar, "Optimal estimation with limited measurements," *IJSCC* 2010
- 2. Lipsa & Martins, "Remote state estimation with communication costs for first-order LTI systems," IEEE TAC 2011

Characterization of team-optimal policies

Theorem 1

There exists a team optimal pair of threshold policies for Problem 1

Sketch of Proof:

- Step 1: Equivalent single DM problem
- Step 2: Lagrange duality for infinite dimensional LPs

Main idea

Team-optimality

$$\mathcal{J}(\mathcal{U}_1^*, \mathcal{U}_2^*) \le \mathcal{J}(\mathcal{U}_1, \mathcal{U}_2), \quad (\mathcal{U}_1, \mathcal{U}_2) \in \mathbb{U}_1 \times \mathbb{U}_2$$

Person-by-person optimality

$$\mathcal{J}(\mathcal{U}_1^*, \mathcal{U}_2^*) \leq \mathcal{J}(\mathcal{U}_1, \mathcal{U}_2^*), \quad \mathcal{U}_1 \in \mathbb{U}_1$$

$$\mathcal{J}(\mathcal{U}_1^*, \mathcal{U}_2^*) \le \mathcal{J}(\mathcal{U}_1^*, \mathcal{U}_2), \quad \mathcal{U}_2 \in \mathbb{U}_2$$

$$(\mathcal{U}_1^*,\mathcal{U}_2^*)\in \mathbb{U}_1 imes \mathbb{U}_2 \longrightarrow (\breve{\mathcal{U}}_1^*,\breve{\mathcal{U}}_2^*)\in \mathbb{U}_1 imes \mathbb{U}_2$$

$$\mathcal{J}(\mathcal{U}_1^*,\mathcal{U}_2^*)\geq \mathcal{J}(\breve{\mathcal{U}}_1^*,\breve{\mathcal{U}}_2^*) \qquad \qquad \text{threshold policies}$$

Given any pair of person-by-person optimal policies construct a new pair with equal or better cost, where each policy is threshold

- 1. Yuksel & Basar, Stochastic networked control systems, Birkhauser 2013
- 2. Mahajan et al, "Information structures in optimal decentralized control," CDC 2012

Remote estimation with communication costs

Original cost:

$$\mathcal{J}(\mathcal{U}_1, \mathcal{U}_2) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right]$$

Cost from the perspective of DM₁:

$$\mathcal{J}_1(\mathcal{U}_1) = \mathbf{E}\Big[(X_1 - \hat{X}_1)^2\Big] + \rho_2 \cdot \mathbf{P}(U_1 = 1) + \theta_2$$
 do not depend on \mathcal{U}_1

Single DM subproblem

Problem 2

$$\min_{\mathcal{U} \in \mathbb{U}} \ \mathcal{J}(\mathcal{U}) = \mathbf{E}[(X - \hat{X})^2] + \rho \cdot \mathbf{P}(U = 1)$$

$$\mathbf{P}(U=1\mid X=x)=\mathcal{U}(x) \qquad \mathbb{U}=\{\mathcal{U}\mid \mathcal{U}:\mathbb{R}\to[0,1]\}$$

Lemma

There exists an optimal **threshold policy** for Problem 2

Sketch of Proof

1. Express the cost as

$$\mathcal{J}(\mathcal{U}) = \mathbf{E} \Big[\beta (X - \hat{x}_{\mathfrak{C}})^2 + \rho \mid U = 1 \Big] \cdot \mathbf{P}(U = 1) + \mathbf{E} \Big[(X - \hat{x}_{\varnothing})^2 \mid U = 0 \Big] \cdot \mathbf{P}(U = 0)$$

$$\hat{x}_{\mathfrak{C}} = \mathbf{E}[X|U = 1]$$

$$\hat{x}_{\varnothing} = \mathbf{E}[X|U = 0]$$

2. After introducing two linear constraints and a change of variables, we have:

$$\mathbf{P}(U=1) = \alpha$$

$$\mathbf{E}[X|U=0] = \gamma$$

$$\mathcal{G}(x) = \frac{1 - \mathcal{U}(x)}{1 - \alpha}$$

Sketch of Proof

moment optimization problem with variable bounds

minimize
$$\mathbf{E}[X^2 \mathcal{G}(X)]$$

subject to $\mathbf{E}[X\mathcal{G}(X)] = \gamma$
 $\mathbf{E}[\mathcal{G}(X)] = 1$
 $0 \le \mathcal{G}(x) \le \frac{1}{1-\alpha}$

convex

- 1. Akhiezer, The Classical Moment Problem, 1965
- 2. Byrnes & Lindquist, "A convex optimization approach to generalized moment problems," Springer 2003

Sketch of Proof

3. The Lagrange dual function is

$$C^*(\nu) = -\nu_1 - \nu_0 \gamma - \frac{1}{1-\alpha} \mathbf{E} \left[[X^2 + \nu_0 X + \nu_1]^- \right]$$

strong duality holds^{1,2}

4. The solution to the primal problem is

$$\mathcal{G}_{\nu^*}(x) = \begin{cases} \frac{1}{1-\alpha} & \text{if } x^2 + \nu_0^* x + \nu_1^* \le 0\\ 0 & \text{otherwise} \end{cases}$$

5. In the original optimization variable:

$$\mathcal{U}_{\nu^*}(x) = \begin{cases} 0 & \text{if } x^2 + \nu_0^* x + \nu_1^* \le 0\\ 1 & \text{otherwise} \end{cases} \Longrightarrow$$

$$\mathcal{U}^*(x) = \begin{cases} 0 & \text{if } a \le x \le b \\ 1 & \text{otherwise} \end{cases}$$

- 1. Borwein & Lewis, Math. Prog. 1992
- 2. Limber & Goodrich, JOTA 1993

Remarks

Assumption:

- 1. Valid for any continuous probability distribution
- 2. Vector observations and any number of sensors

Finite 1st and 2nd
moments
(req. for strong duality)

Additional assumption:

The fusion center can decode the indices of all sensors involved in a collision

Person-by-person optimal threshold policies

i.i.d. observations, symmetric pdf

asymmetric thresholds

$$\mathcal{J}(\mathcal{U}_1^{\star}, \mathcal{U}_2^{\star}) = 0.54$$

Gain of 46% over open loop scheduling policies

Drawback

Computing team-optimal thresholds is still a very difficult problem!

We know how to compute person-by-person optimal policies efficiently¹

Can we provide an optimality guarantee?

Drawback

Computing team-optimal thresholds is still a very difficult problem!

We know how to compute person-by-person optimal policies efficiently¹

Can we find a nontrivial lower bound?

"Centralized" lower bound

The optimal performance of this system is a lower bound to the decentralized problem

Observation-driven sensor scheduling

Basic framework

Sensor scheduling problem

Choose k out of n sensors such that the expected distortion between \pmb{W} and $\hat{\pmb{W}}$ is minimized

- 1. Athans Automatica 1972
- 2. Joshi & Boyd IEEE TSP 2009

- 3. Mo, Ambrosino & Sinopoli Automatica 2011
- 4. Moon & Basar IEEE TSP 2017

Simplest case: two sensors

Observations

 $X_i \sim \mathcal{N}(0, \sigma_i^2)$

Decision variable

$$U \in \{1, 2\}$$

Transmit

$$S = (1, X_1)$$
 $S = (2, X_2)$

Transmit

$$U = \mathcal{U}(X_1, X_2)$$

Estimation policy

$$\begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix} = \mathcal{E}(Y)$$

Simplest case: two sensors

Observations

$$X_i \sim \mathcal{N}(0, \sigma_i^2)$$

Decision variable

$$U \in \{1, 2\}$$

Scheduling policy

$$U = \mathcal{U}(X_1, X_2)$$

Estimation policy

$$\begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix} = \mathcal{E}(Y)$$

Problem 3

Sensors

$$\min_{(\mathcal{U},\mathcal{E})\in\mathbb{U}\times\mathbb{E}} \quad \mathcal{J}(\mathcal{U},\mathcal{E}) = \mathbf{E}\left[(X_1 - \hat{X}_1)^2 + (X_2 - \hat{X}_2)^2 \right]$$

Notions of optimality

Team-optimality

$$\mathcal{J}(\mathcal{U}^{\star}, \mathcal{E}^{\star}) \leq \mathcal{J}(\mathcal{U}, \mathcal{E}), \quad (\mathcal{U}, \mathcal{E}) \in \mathbb{U} \times \mathbb{E}$$

Person-by-person optimality

$$\mathcal{J}(\mathcal{U}^{\star}, \mathcal{E}^{\star}) \leq \mathcal{J}(\mathcal{U}, \mathcal{E}^{\star}), \quad \mathcal{U} \in \mathbb{U}$$

 $\mathcal{J}(\mathcal{U}^{\star}, \mathcal{E}^{\star}) \leq \mathcal{J}(\mathcal{U}^{\star}, \mathcal{E}), \quad \mathcal{E} \in \mathbb{E}$

Unfortunately, finding team-optimal optimal solutions is very difficult

Finding person-by-person optimal solutions is often much easier*

Max-scheduling

Max-scheduling policy

$$\mathcal{U}^{\max}(x_1, x_2) = \begin{cases} 1 & \text{if } |x_1| \ge |x_2| \\ 2 & \text{otherwise} \end{cases}$$

Mean-estimation policy

$$\mathcal{E}^{\text{mean}}(1, x_1) = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$$

$$\mathcal{E}^{\text{mean}}(2, x_2) = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$$

Independent sources

Theorem 2

$$X_1 \perp \!\!\! \perp X_2 \implies (\mathcal{U}^{\max}, \mathcal{E}^{\text{mean}})$$
 is person-by-person optimal

Open-loop scheduling: let the sensor with the largest variance transmit

Observation-driven scheduling^{1,2}: let the sensor with the "largest measurement" transmit

- 1. Vasconcelos & Mitra "Observation-driven sensor scheduling" IEEE ICC 2017
- 2. Vasconcelos & Mitra "Observation-driven scheduling of Gaussian sources" To be submitted to IEEE TCNS 2018

Sketch of proof

The MMSE estimator for a given scheduling policy is

$$\mathcal{E}_{\mathcal{U}}^{\star}(1, x_1) = \begin{bmatrix} x_1 \\ \mathbf{E}[X_2 \mid U = 1, X_1 = x_1] \end{bmatrix}$$

$$\mathcal{E}_{\mathcal{U}}^{\star}(2, x_2) = \begin{bmatrix} \mathbf{E}[X_1 \mid U = 2, X_2 = x_2] \\ x_2 \end{bmatrix}$$

Suppose that $U = U^{max}$ then

$$\mathbf{E}[X_2 \mid U = 1, X_1 = x_1] = \frac{\int_{\mathbb{R}} x_2 \mathbf{1}(|x_1| \ge |x_2|) f_{X_2 \mid X_1 = x_1}(x_2) dx_2}{\int_{\mathbb{R}} \mathbf{1}(|x_1| \ge |x_2|) f_{X_2 \mid X_1 = x_1}(x_2) dx_2}$$

Sketch of proof

The MMSE estimator for a given scheduling policy is

$$\mathcal{E}_{\mathcal{U}}^{\star}(1, x_1) = \begin{bmatrix} x_1 \\ \mathbf{E}[X_2 \mid U = 1, X_1 = x_1] \end{bmatrix}$$

$$\mathcal{E}_{\mathcal{U}}^{\star}(2, x_2) = \begin{bmatrix} \mathbf{E}[X_1 \mid U = 2, X_2 = x_2] \\ x_2 \end{bmatrix}$$

Suppose that $\mathcal{U} = \mathcal{U}^{\max}$ then

$$\mathbf{E}\big[X_2 \mid U=1, X_1=x_1\big] = \frac{\int_{-|x_1|}^{|x_1|} x_2 f_{X_2}(x_2) dx_2}{\int_{-|x_1|}^{|x_1|} f_{X_2}(x_2) dx_2} = 0$$

Sketch of proof

Fix an estimation policy of the form:

$$\mathcal{E}(1, x_1) = \begin{bmatrix} x_1 \\ \eta_2(x_1) \end{bmatrix} \qquad \mathcal{E}(2, x_2) = \begin{bmatrix} \eta_1(x_2) \\ x_2 \end{bmatrix}$$

The cost becomes

$$\mathcal{J}(\mathcal{U}, \mathcal{E}) = \int_{\mathbb{R}^2} (x_2 - \eta_2(x_1))^2 \mathbf{1} (\mathcal{U}(x_1, x_2) = 1) f(x_1, x_2) dx_1 dx_2$$
$$+ \int_{\mathbb{R}^2} (x_1 - \eta_1(x_2))^2 \mathbf{1} (\mathcal{U}(x_1, x_2) = 2) f(x_1, x_2) dx_1 dx_2$$

$$\mathcal{U}_{\mathcal{E}}^{\star}(x_1, x_2) = 1 \iff (x_1 - \eta_1(x_2))^2 \ge (x_2 - \eta_2(x_1))^2$$

Generalized Nearest Neighbor Condition

Sketch of proof

$$\mathcal{U}_{\mathcal{E}}^{\star}(x_1, x_2) = 1 \iff (x_1 - \eta_1(x_2))^2 \ge (x_2 - \eta_2(x_1))^2$$

Suppose that
$$\eta_1(x_2) = \eta_2(x_1) \equiv 0$$

then
$$\mathcal{U}_{\mathcal{E}^{\mathrm{mean}}}^{\star}(x_1, x_2) = 1 \iff (x_1 - 0)^2 \ge (x_2 - 0)^2$$
 $|x_1| \ge |x_2|$

Value of information

$$\mathcal{J}(\mathcal{U}^{\max}, \mathcal{E}^{\mathrm{mean}}) = \mathbf{E} \Big[\min \left\{ X_1^2, X_2^2 \right\} \Big]$$

Observation-driven sensor scheduling

$$\mathcal{J}(\mathcal{U}^{\mathrm{open}},\mathcal{E}^{\mathrm{mean}}) = \min\left\{\sigma_1^2,\sigma_2^2
ight\}$$
 "Open-loop" sensor scheduling

Remarks

- 1. Result only depends on the even symmetry of the density
- 2. Can be extended to any number of sensors making vector observations¹

Symmetric sources

Theorem 3

$$\sigma_1^2 = \sigma_2^2 \implies (\mathcal{U}^{\text{max}}, \mathcal{E}^{\text{soft}})$$
 is person-by-person optimal

Soft-threshold estimation policy

$$\mathcal{E}^{\text{soft}}(1, x_1) = \begin{bmatrix} x_1 \\ \eta(x_1) \end{bmatrix}$$

$$\mathcal{E}^{\text{soft}}(2, x_2) = \begin{bmatrix} \eta(x_2) \\ x_2 \end{bmatrix}$$

$$\eta(\xi) = \frac{\int_{-|\xi|}^{|\xi|} \tau \exp\left(-\frac{(\tau - \rho \xi)^2}{2\sigma^2(1 - \rho^2)}\right) d\tau}{\int_{-|\xi|}^{|\xi|} \exp\left(-\frac{(\tau - \rho \xi)^2}{2\sigma^2(1 - \rho^2)}\right) d\tau}$$

General Gaussian sources

Observations

$$egin{bmatrix} X_1 \ X_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^\mathsf{T}$$

General Gaussian sources

Observations

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

Theorem 4

$$\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \implies (\mathcal{U}^{\mathrm{unc}}, \mathcal{E}^{\mathrm{unc}})$$
 is person-by-person optimal

Performance

$$\eta(\xi) = \frac{\int_{-|\xi|}^{|\xi|} \tau \exp\left(-\frac{(\tau - \rho \xi)^2}{2\sigma^2(1 - \rho^2)}\right) d\tau}{\int_{-|\xi|}^{|\xi|} \exp\left(-\frac{(\tau - \rho \xi)^2}{2\sigma^2(1 - \rho^2)}\right) d\tau}$$

$$\eta(\xi) = \rho \cdot \xi$$

Scheduling sensors with unknown joint density

Arbitrary joint density

$$(X_1, X_2) \sim f(x_1, x_2)$$

Generalized nearest neighbor condition

$$\mathcal{U}_{\mathcal{E}}^{\star}(x_1, x_2) = 1 \iff (x_1 - \eta_1(x_2))^2 \ge (x_2 - \eta_2(x_1))^2$$

Infinite dimensional optimization

$$\mathcal{J}(\eta_1, \eta_2) = \mathbf{E} \Big[\min \{ (X_1 - \eta_1(X_2))^2, (X_1 - \eta_2(X_1))^2 \} \Big]$$

Arbitrary joint density

$$(X_1, X_2) \sim f(x_1, x_2)$$

Generalized nearest neighbor condition

Finite dimensional optimization

$$\mathcal{J}(\mathbf{a}) = \mathbf{E}\Big[\min\{(X_1 - a_1 X_2)^2, (X_1 - a_2 X_1)^2\}\Big]$$

Arbitrary joint density

$$(X_1, X_2) \sim f(x_1, x_2)$$

Generalized nearest neighbor condition

Finite dimensional optimization

$$\mathcal{J}(\mathbf{a}) = \mathbf{E} \Big[(X_1 - a_1 X_2)^2 + (X_1 - a_2 X_1)^2 \Big] - \mathbf{E} \Big[\max \{ (X_1 - a_1 X_2)^2, (X_1 - a_2 X_1)^2 \} \Big]$$

Difference of Convex

Difference of Convex decomposition

$$\mathcal{J}(\mathbf{a}) = \mathcal{F}(\mathbf{a}) - \mathcal{G}(\mathbf{a})$$

$$\mathcal{F}(\mathbf{a}) = \mathbf{E} \Big[(X_1 - a_1 X_2)^2 + (X_1 - a_2 X_1)^2 \Big]$$

$$G(\mathbf{a}) = \mathbf{E} \Big[\max \{ (X_1 - a_1 X_2)^2, (X_1 - a_2 X_1)^2 \} \Big]$$

Convex-concave procedure

Heuristics to find local minimizers^[1,2]

$$\mathcal{J}(\mathbf{a}) = \mathcal{F}(\mathbf{a}) - \mathcal{G}(\mathbf{a})$$

^[1] Lipp and Boyd - Optim Eng (2016)

[2] Yuille and Rangarajan - Neural Comp (2003)

Unknown density

$$(X_1, X_2) \sim ?$$

Cannot compute expectations

Replace expectations by the empirical mean

Data:
$$\{x_1(k), x_2(k)\}_{k=1}^K$$

$$\tilde{\mathcal{F}}(\mathbf{a}) = \frac{1}{K} \sum_{k=1}^{K} \left[\left(x_1(k) - a_1 x_2(k) \right)^2 + \left(x_2(k) - a_2 x_1(k) \right)^2 \right]$$

$$\tilde{\mathcal{G}}(\mathbf{a}) = \frac{1}{K} \sum_{k=1}^{K} \left[\max \left\{ \left(x_1(k) - a_1 x_2(k) \right)^2, \left(x_2(k) - a_2 x_1(k) \right)^2 \right\} \right]$$

Approximate convex-concave procedure

Cannot claim convergence

$$\tilde{g}(\mathbf{a}) = \frac{1}{K} \sum_{k=1}^{K} \begin{bmatrix} -2(x_1(k) - a_1x_2(k))x_2(k) \cdot \mathbf{1}((x_1(k) - a_1x_2(k))^2 \ge (x_2(k) - a_2x_1(k))^2) \\ -2(x_2(k) - a_2x_1(k))x_1(k) \cdot \mathbf{1}((x_1(k) - a_1x_2(k))^2 < (x_2(k) - a_2x_1(k))^2) \end{bmatrix}$$

Empirical results

$$(X_1, X_2) \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 & 1.7748 \\ 1.7748 & 7 \end{bmatrix}\right) \qquad K = 1000$$

$$L = 100$$

Within 1.5% of the optimal solution

Collision vs. Scheduling

Threshold policies + collision channel = "decentralized max function"

Summary & future work

1. Estimation over the collision channel:

Optimality of threshold policies

Designing globally optimal thresholds is NP-hard

2. Observation-driven scheduling:

Person-by-person optimality results (max-scheduling)

Global optimality results are elusive

Proof of global optimality may come from Information Theory

3. Fundamentals of distributed estimation/scheduling with sensors of unknown (or imprecise) probabilistic models

Future work

The sequential case

$$\mathcal{J}(\mathcal{U}_1, \mathcal{U}_2, \mathcal{E}) = \sum_{k=0}^{T} \mathbf{E} \left[d(W(k), \hat{W}(k)) \right]$$