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Networked decision systems

Communication
network

Many applications

Networked control
Remote estimation
Sensor networks
Robotic networks

= W =

local observation transmitted packet

Xi @ Sz’ Communication
network
Y;

received packet

Many challenges

Communication is imperfect:
Delays, noise, quantization,
congestion, packet drops, connectivity and
interference



Remote sensing

 Remote monitoring of one-time catastrophic events

Oil & gas pipelines Powerlines Bridges

 Real-time wireless networking for the Internet-of-Things




Basic framework

Team of sensors
(Decision Makers)

L Wg—» g Fusion Center
- 2

(Estimator)

collision
channel

e Captures the effect of interference

e >1 transmission results in a collision

Design jointly optimal communication and estimation policies



Estimation over the collision channel

Observations

X’i ~ fo,, B Xl
X; AL X P
le(ZL') >0, x; € R
Decision variables Communication policy Estimation policy
UZ' < {O, 1} P(l]Z =1 ‘ Xz = CUZ) — Z/{Z(CUZ) X — E(y)

Transmit
S; = O S; = (Z,XZ)



Estimation over the collision channel




Simplest case: two sensors

collision
channel

U= {U|U:R—[0,1]}, ic{1,2)

Problem 1

(Ul,ug)lé%l X Usg j(Z/{1,Z/[2) = E |:(X1 — Xl)z S (X2 _ XQ)Q



Collision channel

single transmission
Uy =1,U; =0

success!

From the channel output we can always recover U; and U,



Collision channel

NO transmMissions
U =0,Us =0

no transmission &

From the channel output we can always recover U; and U,



Collision channel

>1 transmissions
U =1,U; =1

collision &

From the channel output we can always recover U; and U,

10



Collision channel

single transmission no transmissions >1 transmissions
U =1,U, =0 U =0,Uy =0 U =1,U,=1

success! Nno transmission & collision ¢

The collision channel is fundamentally different
from the packet-drop channel?

1. Sinopoli et al, “Kalman filtering with intermittent observations,” IEEE TAC 2004
2. Gupta et al, “Optimal LQG control across packet-dropping links,” Systems and Control Letters 2007
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Why is this problem interesting”?

collision Xq
channel X5
Xo
(ul,uglé%l xUs J (U, Uz) = E {(Xl — X1)2 + (X2 — X2)2
Team-decision problem . Nonconvex
with nonclassical information structure (in most cases) intractable™2

1.  Witsenhausen, “A counterexample in optimal stochastic control,” SIAM J. Control 1968
2. Tsitsiklis & Athans, “On the complexity of decentralized decision making and detection problems,” IEEE TAC 1985
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Why is this problem interesting”?

collision )g-l
channel X,

Xo—{ Us So
(Ul,uglé%l XUz j<u172/{2) = E |:(X1 — Xl)Q =S (X2 _ XQ)Q

Look for a class parametrizable policies that
contains an optimal strategy

1.  Witsenhausen, “A counterexample in optimal stochastic control,” SIAM J. Control 1968
2. Tsitsiklis & Athans, “On the complexity of decentralized decision making and detection problems,” IEEE TAC 1985 13



Deterministic threshold policies

U(x)

Transmit Silence Transmit

Vv

Threshold policy

0 a<zxz<b
1 otherwise

u() = {

1. Imer & Basar, “Optimal estimation with limited measurements,” IJSCC 2010
2. Lipsa & Martins, “Remote state estimation with communication costs for first-order LTI systems,” IEEE TAC 2011 14



Characterization of team-optimal policies

Theorem 1

There exists a team optimal pair of threshold policies for Problem 1

Ui () Uz ()

a1 b1 x a2 by

Sketch of Proof:
e Step 1: Equivalent single DM problem

o Step 2: Lagrange duality for infinite dimensional LPs

15



Main idea

Person-by-person optimality

Team-optimality
j(”ika/{;) < j(Ul,Z/{Q), (Z/{laz/[Q) S Ul X UQ @g

7 JULU) < TULUR), Uy €T,

JUTUy) < TUT,U), U € Uy

U U3) e Uy x Uy — (U, U € Uy x Uy

T (Ut Uz) > J(szf,sz;>\

Given any pair of person-by-person optimal policies
construct a new pair with equal or better cost,
where each policy is threshold

1. Yuksel & Basar, Stochastic networked control systems, Birkhauser 2013
2. Mahajan et al, “Information structures in optimal decentralized control,” CDC 2012

threshold
policies

16



Remote estimation with communication costs

collision
channel

92

arbitrarily fixed = P(Us =1) =3 is constant

Original cost:
J U, Us) = E {(Xl — X1)?2 4+ (X5 — X5)?

Cost from the perspective of DMy:

Ti(th) = E[(X1 = X1)2| + ps - P(U1 = 1) + 02

N /

do not depend on i/

17



Single DM subproblem

D ~ B(p)

Determines if the channel

S collision Y A is occupied or not
S channel g X
X U D

Sensor Estimator
Problem 2
min 7 (U) = E[(X - X2 +p-P(U=1)

P(U=1|X=2)=Ux U={U|U:R—0,1]}

Lemma

There exists an optimal threshold policy for Problem 2

18



1. Express the cost as

-

-

Sketch of Proof

Q

|
5

19



Sketch of Proof

moment optimization problem
with variable bounds

minimize E[X*G(X)]
GeL2 (R) ]

subject to E|XG(X)| =
E[G(X)] =1

5

p—

0<G(z) <

\
convex

1. Akhiezer, The Classical Moment Problem,1965
2. Byrnes & Lindquist, "A convex optimization approach to generalized moment problems,” Springer 2003

20



Sketch of Proof

3. The Lagrange dual function is

C*(v) = —v1 — 1oy — E[[X2+ X +1,)"]  strong duality holds'?

1l — «

4. The solution to the primal problem is

2 ifx? e+ <0
0 otherwise

5. In the original optimization variable:

U« (x) =

0 ifx?+viz+vi <0 }
{ ST = - U* (z) =

1 otherwise

{O if a<xz<b

1 otherwise

1. Borwein & Lewis, Math. Prog. 1992
2. Limber & Goodrich, JOTA 1993 21



Remarks

Assumption:
Finite 1stand 2nd

./ moments

1. Valid for any continuous probability distribution |
(req. for strong duality)

2. Vector observations and any number of sensors

Additional assumption:
The fusion center can decode the
indices of all sensors involved in a

collision
fx ()

U(x)

transmit idle transmit

Vasconcelos & Martins, “Optimal estimation over the collision channel,” IEEE TAC 2017 22



Person-by-person optimal threshold policies

X17X2 NN(O71)

N(0,1)

Ur(x)

+0.098 +5.359 x

.i.d. observations, symmetric pdf J (U, U5) = 0.54

Gain of 46% over

asymmetric thresholds . .
open loop scheduling policies

Vasconcelos & Martins, “Optimal thresholds for remote estimation over the collision channel,” [IEEE CDC 2015
Lipsa & Martins, “Remote state estimation with communication costs for first-order LTI systems”. IEEE TAC 2011 23



Drawback

Computing team-optimal thresholds
Is still a very difficult problem!

We know how to compute
person-by-person optimal policies efficiently’

Can we provide an ?

1. Vasconcelos & Martins, “Optimal estimation over the collision channel,” IEEE TAC 2017

24



Drawback

Computing team-optimal thresholds
Is still a very difficult problem!

We know how to compute
person-by-person optimal policies efficiently’

Can we find a ?

Vasconcelos & Martins, “Optimal estimation over the collision channel,” IEEE TAC 2017

25



“Centralized” lower bound

collision /:
channel /:

Replace by a scheduler

The optimal performance of this system
Is a lower bound to the decentralized problem



Observation-driven sensor scheduling

27



Basic framework

Sensors . .
communication
constraint
X1
,1
X

]
\»/

Sla"';Sk (s/'_\/wsla"'ask A
1/ \ Wireless c W

----------- 1= S
Scheduler k<n g‘;ilto(;
Xn

Sensor scheduling problem

Choose k out of n sensors such Athat
the expected distortion between W and W is minimized

1. Athans - Automatica 1972 3. Mo, Ambrosino & Sinopoli - Automatica 2011
2. Joshi & Boyd - I[EEE TSP 2009 4. Moon & Basar - IEEE TSP 2017

28



Simplest case: two Sensors

Sensors
Observations S1 X,
7 X1 or X2 _ < [Xll
Xi ~ N(O, 0'22) / i XQ
s [ X2 Scheduler Remote
2 Estimator
Decision Scheduling Estimation
variable policy policy
_ X,
U e{1,2} U =U(Xy1,X5) [X] = E(Y)
2

/\

Transmit
S — (1,X1) S — (2,X2)



Simplest case: two Sensors

Sensors
Observations S1 X,
7 X1 or X2 _ < Xl
Xi NN(O,O'ZQ) / ] [XQI
s [ X2 Scheduler Remote
2 Estimator
Decision Scheduling Estimation
variable policy policy
[/ U=U(X{, X X, _
e {1,2} (X1, X2) S| =E)
2
Problem 3

W BB TUE =B [(X: - K1)+ (X - X)?]

30



Notions of optimality

Person-by-person optimality
Team-optimality

s
JUE)<TJU,E), UE)eUxE e T, &)

J U E)

U, "), Uel

J
JUE), E€R

IA A

Unfortunately, finding team-optimal optimal solutions is very difficult

Finding person-by-person optimal solutions is often much easier”

*depending on the probabilistic model of the source

31



Max-scheduling

Max-scheduling policy

2 otherwise

Z/{max<ﬂ31,332) — {

umax A

Mean-estimation policy

gmean(l,wl) — O
mean - 0 _
g (2, :UQ) — o

32



Independent sources

Theorem 2

X, L Xy = (U™, E™M*) is person-by-person optimal

Open-loop scheduling: let the sensor with the largest variance transmit

Observation-driven scheduling'2: let the sensor with the “largest measurement” transmit

1. Vasconcelos & Mitra - “Observation-driven sensor scheduling” IEEE ICC 2017
2. Vasconcelos & Mitra - “Observation-driven scheduling of Gaussian sources” To be submitted to JEEE TCNS 2018 33



Sketch of proof

The MMSE estimator for a given scheduling policy is

* L 1
&,{(1,581) — [E[XQ ‘ U — 1,X1 _ le}]

£(2, 22) [E[Xl |U=2X;= ;,;2]]

)

Suppose that U/ =U™** then

Jgzel(|za] > |m2|) fay 0, =0, (72)da

EXe|U=1X; = =
[ 2 ‘ y <) 1 331} fR]_(‘,CUﬂ > ‘:I;Q‘)fXQ‘Xlzajl ($2)d$2

34



Sketch of proof

The MMSE estimator for a given scheduling policy is

Suppose that U/ =U™** then

f|fE1|
EZ

Symmetric around zero

332sz $2>dﬂ?2

E[X, | U=1,X =] =

f |

$1’
|1

fX2 CIZ‘Q d.CUQ

35



Sketch of proof

Fix an estimation policy of the form:

E(1,21) = [n;&l)] £(2,72) = [771(5’32)]

The cost becomes

(ZCQ — 772(561))21(2/{(331,332> = 1)f(5131,5132)d5131d562

2

JU,E) =

_|_

s

(581 — M (5132))21(2/{(331,332) — Q)f(ﬂﬁl,llﬁg)dﬂfldiljg

2

Z/{g(ib‘l,ib‘g) =1 <— (ZBl — 771(562))2 > ($2 — 772(5171))2

Generalized Nearest Neighbor Condition

36



Sketch of proof

Z/[E(CIJMCIJQ) = 1 <— <5131 — 771(5132))2 > (332 — 772(5131))

Suppose that  71(22) = n2(21) =0

then  Ufmean (z1,32) = 1 <= (21 — 0)” > (25 — 0)°

1| = |22

2

37



Value of information

J (e, gmeat) = E{min {X%,X%}}

)

Observation-driven sensor scheduling

J(UCPH £ = min {0%, 03}

’

“Open-loop” sensor scheduling

100

107 f
— max-scheduling/mean-estimation
— open loop scheduling and estimation |
107 10° 10°
o
Remarks

1. Result only depends on the even symmetry of the density
2. Can be extended to any number of sensors making vector observations'

1. Vasconcelos, Nayyar & Mitra - “Optimal scheduling strategies in networked estimation” IEEE CDC 2017

102

38



Symmetric sources

Theorem 3
0 =02 = (U™, E%M) is person-by-person optimal
Soft-threshold estimation policy 51
gsoft 17 _ 1
( ZBl) 77(3:.1)-
gsoft(Q’ 332) _ 77(372)
i) ]
f|€| T ex (— (r—p&)° ) dr
(5) _ — €] b 202(1—p?)
! flfi _ (=082 \ 4
—1el P\ T 202152y ) 47

Proof is much more involved...

39



General Gaussian sources

Sensors
Observations Sl X,
Xl 2/ X7 or X5 L e —)[)571]
™~ N(Ov 2) X2
X2 X Yehedul Remote
S2 cheaer Estimator
O'% PO102 T
E — 2 — WA.W
PO109 09
% e .
> ~ ~ ! > >
i X7 or X5 E - !
‘W‘ X : Z/{max > gmean : 2 W
2 | - Xo -
L > ; > - > X2
SR person-by-person optimal-----------

40



Xo
Theorem 4
X~N03Y =
X1 > ZSHN
i \%% X, U
Xo—> >
L Z/{unc _____________________

Observations

[X1] ~ N(0,X)

General Gaussian sources

Sensors

S1

U

Xq
.

2 Scheduler

X1 or X2

X7 or X5 L e ){1
X2
Remote
Estimator

person-by-person optimal

gmean

X1 | .
> ———> Xl
: wh |
> ——> X2

41



0.4

0.05

0.35 |
0.3 |

0.25 |

0.15 |

0.1}

Performance

Soft-thresholding estimator
— — Decorrelating approach
—-—=-Linear estimator

01 02 03 04 05 06 0.7

0.9 1

n)=p-§
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Scheduling sensors with unknown joint density

43



Arbitrary joint density

(X1, X2) ~ f(x1,72)

Generalized nearest neighbor condition

Z/lg(ibl,ibg) = ] <— (5131 — 771(582))2 > (5132 — 772(561))2

Infinite dimensional optimization

T (n1,m2) = E{min{(Xl - 771(X2))27 (X1 - 772(X1)>2}}

44



Arbitrary joint density

(X1, X2) ~ f(x1,72)

Generalized nearest neighbor condition

Z/[;/f(CEl,CCQ) = ] <— (5131 — 771(582))2 > (5132 — 772(331))2

ni(x) = a;x
Linear estimators

Finite dimensional optimization

J(a) = E[min (X1 — a1 X0)?, (X — a2X1)2}}

Nonconvex

45



Arbitrary joint density

(X1, X2) ~ f(x1,72)

Generalized nearest neighbor condition

Z/[E(ﬂ]l,xg) = ] <— (5131 — 771(582))2 > (5132 — 772(5131))2

ni(x) = a;x
Linear estimators

Finite dimensional optimization

T(a) = E[(X1 — 0 Xo) o+ (X — agxl)ﬂ _ E[max{(x1 — 0 Xo)? (X — a2X1)2}}

Difference of Convex

46



Difference of Convex decomposition

F(a) = E[(Xl — a1 Xa)” + (X0 - a2X1)2}

G(a) = E[max [(X1 — a1 X5), (X; — aQXl)Z}}

47



Convex-concave procedure

Heuristics to find local minimizersl(1.2]

MONE > Gamne(@;a®) = G(@®) + g(a®)T(a — a®)

A ®

Subgradient of G(a)

v

o a(k+1) = arg min {F(a) — gafﬁne(a; a(k))}

Converges
\ to a critical point

Convex

[1] Lipp and Boyd - Optim Eng (2016)
[2] Yuille and Rangarajan - Neural Comp (2003)

48



Unknown density

(X1, Xs) ~ ?

Cannot compute expectations

Replace expectations by the empirical mean

Data: {x(k), »’62(/'?)}5:1

49



Approximate convex-concave procedure

A5 e

> Gamine(a;a®) = G(a®) + g(a®)T(a —a®)

\4

Subgradient of G (a)

~

o a(k+1) = arg min {F(a) — éafﬁne(a; a(k))}

AN

Convex

Cannot claim convergence

50



Empirical results

0 5 1.7748 K = 1000
R R e )
200
150 - |
>
)
-
O
Q%; 1007 1000 experiments |
€
50 -
0 [ = | Iy —
1.97 1.975 1.98 1.985 1.99 1.995 2
J(a)
J* =1.9704

Within 1.5% of the optimal solution
51



Collision vs. Scheduling

collision
channel

N(0,1)

Ur(z)

+0.098 +5.359 T

Threshold policies + collision channel =

Sensors
S X\1)
U X1 or X2 J e |:

X Remote
S2 2 Scheduler Estimator
7/ Max A

U=2
U=1
U=1

“decentralized max function”

X1

52



Summary & future work

1. Estimation over the collision channel:
Optimality of threshold policies
Designing globally optimal thresholds is NP-hard
2. Observation-driven scheduling:
Person-by-person optimality results (max-scheduling)

Global optimality results are elusive

Proof of global optimality may come from Information Theory

3. Fundamentals of distributed estimation/scheduling with sensors

of unknown (or imprecise) probabilistic models

53



Future work

The sequential case

54



